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Abstract 

Covering all edges in a graph with a small set of vertices is one of the most fundamental graph problems which is called the 

minimum vertex cover problem. In the literature different strategies have been employed to find near-optimal minimum vertex 

cover set in different kinds of graphs. 

In this work, two efficient algorithms (i.e., MAxA and MAxAR) are introduced to find the minimum vertex cover set in any 

unweighted undirected graph. The proposed construction algorithms have two main steps in each iteration which explore 

neighborhoods of minimum degree vertices to find and select appropriate vertices for the cover set. Until all of the edges are 

removed or selected in the algorithms, these two steps are performed iteratively. The proposed algorithms have been implemented 

on DIMACS, BHOSLIB, and other benchmarks where experimental results show that the proposed algorithms outperform other 

relevant methods in terms of time and cardinality of vertex cover set. 
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1. Introduction 

There are many reasons for using surveillance cameras on city roads. In a road graph, the edges and nodes represent the roads 

and intersections, respectively. What we are required to do is to put cameras in the intersections to see the city in its entirety. In 

addition, as few cameras as possible should be used for cost efficiency. For a simple graph 𝐺, 𝐶 is a subset of vertices such that 

at least one ends of each edge is in 𝐶. Therefore, the goal is to find minimum vertex cover in the road graph. Below, some of 

real-world applications for minimum vertex cover are listed [1]:  

 In a wireless sensor network, the minimum vertex cover can be used for monitoring links, routing, data aggregation, clustering 

[2, 3], and so on. For example, in reference [4], the authors have proposed algorithms, which are used to increase the lifespan of 

a wireless sensor network. By selecting a minimum number of nodes, the mentioned algorithms reduce energy consumption.  

 In biochemistry calculations [5], the problem of minimum vertex cover has been used for the structure of the phylogenetic tree 

as well as for analyzing multiple sequence levels to infer the evolutionary relationships between genes and proteins. In the 

conflict graph, in which the vertices and edges represent the sequence of samples and the conflict between the corresponding 

sequences respectively, the minimum vertex cover is used to eliminate all of the paradoxes by removing the smallest sequence. 

To protect large networks against propagation of hidden worms in real-time, the minimum vertex cover has recently been used 

in a graph in which the vertices and edges are the routing servers and connections between routing servers, respectively [6].  

In other computer fields such as scheduling, VLSI design, and signal transmission, the minimum vertex cover is used to find the 

closest solution to the perfect solution [7]. An efficient algorithm for minimum vertex cover can improve parameters of time, 

cost, and resource allocation in different applications. 

The potential applications of minimum vertex cover reveal its significance. In addition, due to the NP nature of the problem, it 

still draws the attention of researchers. Several exact algorithms [8-11] such as Branch and Bound, LP-Based Branch and Cut as 

well as approximate algorithms have been proposed to solve the problem. On the other hand, to find the optimal solution for the 

minimum vertex cover, any factor smaller than 1.3606 [12] is considered an NP-hard problem. Many algorithms have been 

proposed for the minimum vertex cover problem, including the maximum degree greedy algorithm (MDG) [13], vertex support 

algorithm (VSA) [14], modified vertex support algorithm (MVSA) [15], and the maximum degree adjacent to the minimum 

degree algorithm (MAMA) [16]. The construction algorithm for minimum vertex cover problem is based on finding a solution 

through expanding a partial vertex set. Primarily, in these algorithms, the vertex set is empty. Then, until it becomes a cover set, 

the vertices are repeatedly added to the set. MDG and VSA are greedy algorithms. Each one of them selects the maximum vertex 

degree and maximum vertex support in each period and then updates the graph. MVSA is a modified version of VSA. MAMA 

selects the vertex with the maximum degree in the neighborhood of the vertex with the minimum degree in each round.  

The proposed algorithms similar to MAMA search the neighborhood of minimum degree vertices. However, in the proposed 

algorithms for each minimum degree vertices, one of the neighbors is selected in each period. The effectiveness of our proposed 

algorithms has been observed on the benchmark of small and large graphs. The simulation results have also shown that our 

proposed algorithms find the vertex cover set with a smaller number of vertices. In addition, it takes less time compared to 

MAMA. 
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The rest of the paper is organized as follows. Section 2 briefly addresses a selected number of more efficient MVC algorithms. 

In Section 3, the proposed algorithms have been introduced while experimental evaluations are described in Section 4. Finally, 

we draw our conclusions in Section 5. 
 

2. Review of Literature  
Because finding the best solution to the problem is impossible. This problem can be studied to find better solutions in the future. 

Several new methods, such as quantum computers, are now used to find the appropriate solution to the MVC problem [42].  But 

there are two challenges to mention: 

1. As technology advances, the amount of data also increases. MVC is one of the few problems where kernelization (reducing 

input size by iterative data reduction rule) is known to be really very efficient. As a result, data management and big data issues 

can become important in the field. 2. The above MVC solutions use the local search method. Therefore, it is necessary to find 

different solutions to avoid getting stuck in local optimization. These solutions should also be pretty fast. In other words, it will 

find several suboptimal solutions in a short time and choose the best one among them. Every day, the application of the MVC 

problem manifests itself more in all types of networks, such as recently the problem was used to monitor surveillance cameras 

in the transport network in Russia [43]. In addition, in a paper made to predict and diagnose COVID-19; Graph theory and MVC 

were used to provide a suitable solution [44]. In the past six decades, a number of methods have been proposed to solve the 

minimum vertex cover. Most of these methods are approximate solutions. In reference [17], Anton investigated the difficulty of 

an algorithm on a graph that is e-dense everywhere; he showed that if we want to solve MVC problem with a factor less than 
7+𝜀

6+2𝜀
, it turns into an NP-hard problem. In the present section, we  review the algorithms for the minimum vertex cover with 

polynomial time complexity. Evolutionary [18 –22] and local search [23-35] algorithms are the two most common approaches 

for solving minimum vertex cover problem.  

The most popular heuristic method for NP-hard combinatorial optimization problems is local search where, numerous important 

algorithms of this type are applicable to complicated problems such as satisfiability, coloring, and routing problems. Cai et al. 

proposed NuMVC, FastVC, NuMVC2+p, and FastVC2+p which have desirable performance in massive graphs. NuMVC 

includes two-stage exchange and uses “edge weighting with forgetting” to deal with and fix the problems of local search methods. 

In FastVC, using two heuristic functions leads to less time complexity and better performance. Improving the previous algorithms 

on the one hand and adding a pre-processing step to them, on the other hand, lead to NuMVC2+p and Fast VC2+p algorithms in 

finding the minimum vertex cover for large sparse graphs. 

Several heuristic algorithms including ‘Evolutionary Algorithm’, ‘Simulated Annealing’, and ‘Branch and Bound’ algorithms 

are used to solve the problem of minimum vertex cover in a random graph that is modeled with 𝐺(𝑛, 𝑐/𝑛). The efficiency of 

these algorithms has been investigated for different values of 𝑐 [36, 37]. 

Time complexity of MDG is 𝑂(𝐸2). In the VSA, there is an adjacency matrix that is used to calculate the sum of degrees for all 

vertices. This value is called vertex support. Afterwards, a vertex with the maximum support is added to the cover set in each 

period. This takes 𝑂(𝑉2). 

MVSA calculates the vertex support in the same way as VSA. Then, in each period, it finds the vertices with minimum support 

and then adds the minimum neighbor to the cover set. The time complexity of MVSA is 𝑂(𝐸𝑉2 log 𝑉2). MAMA adds the largest 

neighbor of the minimum degree vertices in each period to the cover set. The time complexity of MAMA equals to 𝑂(𝐸𝑉2). 
 

3. Proposed Algorithm 
In this section, two algorithms are proposed to solve the minimum vertex cover problem, both of which are based on the neighbors 

of minimum degree vertices. The goal is to select nodes that can cover the largest number of uncovered edges. Considering MDG 

and MAMA algorithms in exploring the minimum degree neighbors, MaxA and MaxAR algorithms are introduced here  where 

the time complexity of both algorithms is 𝑂(𝐸𝑉2). Primarily, the algorithms start with an empty cover set, and two steps are 

repeated to cover all edges of the graph. The first step in both algorithms is to find the vertices with minimum degree (i.e., 𝑀𝑖𝑛 

set). In the second step, the neighbors of the 𝑀𝑖𝑛 set are searched to find the best candidates. 

In MaxA, for each vertex in the 𝑀𝑖𝑛 set, its largest neighbor (the neighbor with the largest degree) is selected and added to the 

cover set. 

MaxAR, which is an extension of MaxA, selects the best candidate for each vertex in the 𝑀𝑖𝑛 set between a maximum degree 

vertex and a random vertex among neighbors. The probability of choosing between each of these two choices is equal to 0.5. In 

fact, MaxAR is a combination of MaxA algorithm and random walk (RW) algorithm. RW is a preferable technique for heuristic 

approaches because it is simple to use and it can easily escape complex boundaries and local optima and cause extensive 

exploration in the state space. As mentioned earlier, MVC is an NP-hard problem and it needs effective heuristics to achieve 

admissible performance. The evaluation of the proposed algorithm shows that this goal is achieved with the help of the RW 

algorithm. Based on these observations, we have presented our two algorithms below, note that here 𝑍 refers to node(s) with no 

edges: 
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Algorithm1: 

Algorithm MaxA: Input 𝐺(𝑉, 𝐸), Output : Cover 

1. Cover = {} 

2. While 𝐺 is not empty 

3.    𝑍 = node(s) with degree 0 

4.    Remove 𝑍 from 𝐺(𝑉, 𝐸) 

5.    𝑀𝑖𝑛 = node(s) with minimum degree 

6.    𝑀𝑎𝑥𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡= find a maximum degree adjacent to each node in 𝑀𝑖𝑛 

7.    Cover = Cover ∪  𝑀𝑎𝑥𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡  

8.    Delete Min and its vertices 

9. End while 

Algorithm 2: 

Algorithm MaxAR: Input: 𝐺(𝑉, 𝐸), Output : Cover 

1. Cover = {} 

2. While 𝐺 is not empty 

3.    𝑍= node(s) with degree 0 

4.    Remove 𝑍 from 𝐺(𝑉, 𝐸) 

5.    𝑀𝑖𝑛 = node(s) with minimum degree 

6.    𝑀𝑎𝑥𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡= find a maximum degree adjacent to each node in 𝑀𝑖𝑛 

7.    𝑅𝑎𝑛𝑑𝑜𝑚 = Select a random adjacent to each node in 𝑀𝑖𝑛 

8.    𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑= for each node in 𝑀𝑖𝑛 select one vertex between its 𝑀𝑎𝑥𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 and 𝑅𝑎𝑛𝑑𝑜𝑚 with              probability ½. 

9.    Cover = Cover ∪ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 

10.  Delete Selected 

11. End while 

In Table 1, we have checked the time complexity of MAMA and MDG algorithms and our two proposed algorithms. As it is 

evident, the time complexity of our algorithms and MAMA are equal. 
 

Table1. Time complexity of simulated algorithms 
MDG MAMA MaxA MaxAR 

𝑂(𝐸2) 𝑂(𝐸𝑉2) 𝑂(𝐸𝑉2) 𝑂(𝐸𝑉2) 

4. Experimental Results 

A series of experiments were conducted to evaluate the performance of our proposed algorithms and compared their results with 

MAMA and MDG. The experimental results in [16] showed that MAMA has better performance in comparison to VSA, MDG, 

and MVSA in the benchmarks of small and large graphs. Therefore, if we show the superiority of the proposed algorithms over 

MAMA, their superiority over MDG, VSA, and MVSA methods is also confirmed. 

In our research, algorithms were coded in Pycharm  2020.3.1 x64. Simulations were also performed on an Intel core i5 computer 

with a Windows 10 operating system.  

Tables 2 and 3 show the efficiency of the proposed algorithms in different benchmarks. DIAMCS and BHOSLIB are the 

machine-learning benchmarks mentioned in the related articles. Other datasets such as biological networks, social networks, web 

graphs, technological networks, etc. [39] are related to different networks. The results of the DIAMCS [40] and BHOSLIB [41] 

benchmarks are compiled in Table 2 and the results of other benchmarks are shown in Table 3. Here, 𝐶∗ and |𝑉| refer to the 

optimal solutions and the number of vertices, respectively. As shown in Tables 2 and 3, our proposed algorithms outperform 

MAMA, and thus outperform the others. 

Table 2. The results of applying MDG, MAMA, and proposed algorithms on DIAMCS and BHOSLIB  

Benchmark |𝑽| 𝑪∗ 
Cardinality of the vertex cover Approximation ratio 

MDG MAMA MaxA MaxAR MDG MAMA MaxA MaxAR 
Brock200-1 200 187 188 196 188 187 1.005 1.048 1.005 1.000 
Brock200-4 200 185 187 189 185 185 1.010 1.021 1.000 1.000 

C125 125 114 115 121 114 114.7 1.008 1.061 1.000 1.006 
C250.9 250 245 245 259 246 246 1.000 1.050 1.004 1.004 
C500.9 500 485.4 487 488 486 485.4 1.003 1.005 1.001 1.000 

c-fat200-1 200 128 139 180 128 128 1.080 1.406 1.000 1.000 
c-fat200-2 200 144 145 154 144 144.2 1.006 1.069 1.000 1.001 
c-fat500-1 200 341 345 352 341 341 1.011 1.032 1.000 1.000 

c-fat500-10 500 372 372 376 372 373 1.000 1.010 1.000 1.002 
c-fat500-2 500 361 363 372 361 361.4 1.005 1.030 1.000 1.001 
c-fat500-5 500 369 370 391 385 369 1.002 1.059 1.043 1.000 
Dsjc-500 500 488.9 491 495 490 488.9 1.004 1.012 1.002 1.000 

Fbr-30-15-2 450 423 423 432 429 429.5 1.000 1.021 1.014 1.015 
Fbr35-17-2 595 567 568 574 567 567 1.001 1.012 1.000 1.000 

Hamming10-2 1024 966 966 1007 982 982 1.000 1.042 1.016 1.016 
Hamming6-2 64 50 50 53 53 52 1.000 1.06 1.060 1.040 
Hamming6-4 64 46 47 50 46 46.1 1.020 1.086 1.000 1.002 
Hamming8-2 256 230 230 250 234 233 1.000 1.086 1.017 1.013 
Hamming8-4 256 230 230 246 234 234.9 1.000 1.069 1.017 1.021 

Johnson16-2-4 120 104 104 109 107 107 1.000 1.048 1.028 1.028 
Johnson32-2-4 496 463 463 475 469 469.6 1.000 1.025 1.012 1.014 
Johnson8-2-4 28 19 20 24 19 19 1.052 1.263 1.000 1.000 
Johnson8-4-4 70 58 58 70 58 58.1 1.000 1.206 1.000 1.001 

Keller4 171 151 151 158 151 151 1.000 1.046 1.000 1.000 
Keller5 776 741 745 750 742 741 1.005 1.012 1.001 1.000 
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phat300-1 300 262.7 264 273 264 262.7 1.004 1.039 1.004 1.000 
phat300-2 300 273 275 278 273 274 1.007 1.018 1.000 1.003 
phat300-3 300 292 293 293 292 292 1.003 1.003 1.000 1.000 
phat700-1 700 640.9 641 645 642 640.9 1.000 1.017 1.004 1.000 
phat700-2 700 654 654 672 656 655.1 1.000 1.027 1.003 1.001 
phat700-3 700 692 693 705 692 692.3 1.001 1.018 1.000 1.000 

Sanr200-0.7 200 186 187 191 186 186.2 1.005 1.026 1.000 1.001 
Sanr200-0.9 200 187 187 190 187 187 1.000 1.016 1.000 1.000 
Sanr400-0.5 400 378 382 385 379 378 1.010 1.018 1.002 1.000 
Sanr400-0.7 400 384 386 391 384 384 1.005 1.018 1.000 1.000 

 

Table 3. The results of applying MDG, MAMA, and proposed algorithms on benchmark instances [39] 

Benchmark |𝑽| 𝑪∗ 
Cardinality of the vertex cover Approximation ratio 

MDG MAMA MaxA MaxAR MDG MAMA MaxA MaxAR 

bio-celegans 453 255 259 285 255 255.2 1.015 1.117 1.000 1.000 

bio-diseasome 516 285 285 371 285 285 1.000 1.301 1.000 1.000 

bio-dmela 7393 2658 2666 2968 2658 2663.8 1.003 1.116 1.000 1.002 

bio-yeast 1458 456 463 557 456 457 1.015 1.221 1.000 1.002 

ca-CSphd 1882 550 556 739 550 551 1.010 1.343 1.000 1.001 

ca-Erdos992 6100 461 461 474 461 461 1.000 1.028 1.000 1.000 

ca-GrQc 4158 2210.3 2219 2719 2211 2210.3 1.003 1.023 1.000 1.000 

ca-HepPh 11204 6557.6 6574 7616 6558 6557.6 1.002 1.161 1.000 1.000 

ca-netscience 379 214 214 275 214 214 1.000 1.285 1.000 1.000 

Frb30-15-1 450 424 429 424 425 424.7 1.011 1.000 1.002 1.001 

Frb30-15-2 450 425 431 426 425 425 1.014 1.002 1.000 1.000 

Frb30-15-3 450 425 429 425 425 425.6 1.009 1.000 1.000 1.001 

ia-email-EU 32430 820 820 874 820 820 1.000 1.065 1.000 1.000 

ia-email-univ 1133 604.2 608 618 605 604.2 1.006 1.022 1.001 1.000 

ia-enron-only 143 87 87 88 91 90.6 1.000 1.011 1.045 1.041 

ia-fb-essages 1266 589.4 595 593 590 589.4 1.009 1.006 1.001 1.000 

ia-infect-dublin 410 297 297 305 298 298.2 1.000 1.026 1.003 1.004 

ia-infect-hyper 113 92 93 93 92 92 1.010 1.010 1.000 1.000 

ia-reality 6809 81 81 81 81 81 1.000 1.000 1.000 1.000 

inf-power 4941 2215 2275 2498 2215 2221.8 1.027 1.127 1.000 1.003 

scc_enron-only 151 138 139 138 138 138 1.007 1.000 1.000 1.000 

scc_fb-forum 897 372 372 373 372 372 1.000 1.000 1.000 1.000 

scc_infect-hyper 113 110 110 110 110 110 1.000 1.000 1.000 1.000 

scc_retweet 18469 562 562 596 563 563.3 1.000 1.060 1.001 1.002 

scc_rt_lolgop 9742 103 103 114 103 103 1.000 1.106 1.000 1.000 

tech-routers-rf 2113 796 805 939 796 796 1.011 1.179 1.000 1.000 

tech-WHOIS 7476 2288 2298 2653 2288 2288.7 1.004 1.159 1.000 1.000 

web-erkStan 12305 5492 5492 6764 5668 5640.3 1.000 1.231 1.032 1.027 

web-edu 3031 1451 1587 1584 1451 1451 1.093 1.091 1.000 1.000 

web-indochina-2004 11358 7300 7424 8224 7300 7300 1.016 1.126 1.000 1.000 

web-spam 4767 2321 2346 2497 2321 2322.6 1.010 1.075 1.000 1.000 

web-webbase-2001 16062 2667 2687 3343 2667 2668 1.007 1.253 1.000 1.000 

As shown in Table 3, the proposed algorithms performed better on the same benchmarks, but in general both algorithms showed 

better coverage rates on sparse graphs compared to the other methods where in dense graphs, their response is often the same as 

the other methods. The average and the best approximation ratio for MAMA, MDG, and our proposed algorithm are shown in 

Table 4 where the approximation ratio is equal to 𝜌 =
Cardinality of the vertex cover

𝐶∗ . The superiority of the proposed algorithms is 

evident from the ratios in Table 4.  

Table 4. Comparison of approximation ratio based on experimental result 

Algorithms 
Worst 

𝝆  

Average 

𝝆  

MDG 1.093 1.040 

MAMA 1.343 1.098 

MaxA 1.045 1.002 

MaxAR 1.041 1.002 

In most of the benchmarks instances, MAMA, MaxA, and MaxAR algorithms take the same execution time. However, 

experimental results have shown that in seven benchmarks, MAMA required more time than other algorithms to run. These 

results are shown in Table 5. 

Table 5. Comparison of execution time 

Benchmark 
MDG 

|𝒎𝒔| 
MAMA 

|𝒎𝒔| 
MaxA 

|𝒎𝒔| 
MaxAR 

|𝒎𝒔| 
tech-routers-rf 0.48 15.89 0.73 0.81 

tech-WHOIS 9.46 1140.76 18.36 18.73 

web-BerkStan 25.38 271.34 25.65 24.34 

web-edu 1.44 7.95 1.29 1.12 

web-indochina-2004 49.06 3131.18 87.17 89.13 

web-spam 7.34 611.51 17.33 16.16 

web-webbase-2001 13.47 1168.00 27.35 24.73 
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5. Conclusion 
The well-known minimum vertex cover problem cannot be solved in polynomial time. In this article, two heuristic algorithms 

MaxA and MaxAR were introduced both of which can be used for any large and small graph. The results revealed that the 

proposed algorithms had better performance in sparse graphs, that is, as the number of vertices increased, the efficiency of the 

proposed algorithms became more apparent. It is expected that the proposed algorithms will be more efficient in large sparse 

graphs. 
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