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ABSTRACT 

Over the past few years, the study of complex networks as an interdisciplinary subject has yielded numerous insights. 

Communication links within these networks have been found to play a crucial role in shaping the implementation of dynamic 

processes. Recursive graphs are a class of complex networks whose internal structure is governed by recurrent relations. Among 

these, line graphs are especially important because they represent the communication links within the network as nodes. Studying 

the heterogeneity, or irregularity, of different graph models is a fundamental research issue in complex and social network 

analysis. In this article, we investigate the mapping between graph robustness and heterogeneity metrics and their equivalent 

metrics in line graphs. Specifically, we analyze the distribution of eigenvalues and important indices of heterogeneity in recursive 

and line graphs. We also examine the changes in heterogeneity of recursive line graphs with the introduction of a set of important 

heterogeneity indices. Our approach is broadly applicable to a wide range of indicators and complex networks beyond those 

discussed in this study. 
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1. INTRODUCTION 

Complex networks are a fundamental concept in various complex systems, including social and ecological, biological, and 

technological systems. Interdisciplinary research in this field is crucial in creating and adapting new models that explore and 

study these networks using scientific and engineering concepts. Scholars have played a critical role in recognizing and analyzing 

the dynamic and topological properties of complex networks. The growth of network approaches is attributed to the emergence 

and expansion of dynamic systems and various inter-system connections that can be analyzed using statistical and mathematical 

techniques rooted in graph theory. The applications of graph theory are diverse and range from urban planning and traffic control 

to epidemiology, financial planning, internet search engines, analysis of complex environmental and molecular biological 

systems, and psychometrics. While classical graph theory mainly deals with the analysis of random graphs, modern network 

science focuses on real-world systems and has shown that real networks are not random in most cases. These networks have 

basic infrastructure processes that ensure their survival, growth, and structure. In graph theory, a complex network refers to a 

network with special structural features that occur only in graphs based on natural phenomena. These features cannot be observed 

in random graphs. Complex networks encompass a wide range of networks, including social networks that examine 

communication networks between humans. Recursive networks are considered a category of synthetic complex networks where 

the growth factor is done recursively. 

 Recursive networks, such as Pascal's triangle and the Fibonacci sequence, are commonly used in mathematical sciences 

due to their simple design and recursive capability. These networks can easily accommodate new nodes without the need for 

reconfiguration of the overall structure, making them highly scalable. One of the key features of recursive networks is the 

presence of multiple paths between each pair of nodes, which increases reliability, while some of these paths are optimized for 

shorter distances to minimize communication delays. Moreover, recursive networks exhibit a strong correlation due to the 

recursive relationship that governs their structure. It is worth noting that there are different recursive algorithms that can be 

employed to construct these networks, and various mathematical relationships have been proposed and proven by researchers to 

enhance the calculation of node labels in recursive networks. 

The characterization of similarities and dissimilarities and the exploration of homomorphism among graphs is a crucial 

issue in the fields of science and engineering, particularly in the theoretical realm of complex and social networks. As graphs 

contain a vast amount of information and are widely used in social, medical, biological sciences, and other fields, it is essential 
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to measure the degree of heterogeneity in these graphs and identify efficient metrics for classifying and characterizing similarities 

between networks. Such metrics can prove useful in many important and practical cases. 

In complex networks, line graphs are a significant area that has received less attention so far. Line graphs are formed 

by transforming the communication links in complex networks into corresponding nodes. It is worth noting that links in real-

world networks are susceptible to damage, such as breakdowns in transmission lines in power grid networks, congestion in 

transportation network routes, and other similar issues. Line graphs can be used to understand the impact of failures caused by 

links in infrastructure networks. 

In this article, we aim to explore the mapping of adjacency matrices of complex recursive networks to line graphs and 

analyze the heterogeneity of some important complex line graphs. Throughout the article, the terms "graph" and "network" are 

used interchangeably. We also introduce a set of important criteria and indicators to analyze heterogeneity. The article is 

organized into five sections. Section 1 provides an introduction to the topic and outlines the main objectives. Section 2 provides 

a literature review on heterogeneity, complex recursive networks, and line graphs. Section 3 discusses previous studies and 

provides an overview of the topic. In Section 4, we analyze the numerical results obtained through simulation experiments. 

Finally, Section 5 presents the findings and conclusions of the article, along with suggestions for future research in this area. 

 

2. PRELEMINARIES 

In this section, a brief review of the related studies and its preparations will be drawn . 

2.1 Heterogeneity in Graphs and Complex Networks 

According to the definition [1], a graph G is called as homogeneous (regular) if and only of the degree of all its vertices is equal. 

Conversely, if the degree of vertices in G varies, it is depicted as heterogeneous (irregular) graph. In this study, we denote the 

set of heterogeneity indicators by IM. This set encompasses various measures of heterogeneity, and any index that estimates the 

graph heterogeneity may be regarded as a member of the IM set. 

The IM set possesses several important features. Firstly, if a heterogeneity index X belongs to IM, then any positive 

constant multiple of X, denoted by CX, also belongs to IM. This scale-free property of the set enables us to produce new 

heterogeneity indices by multiplying any existing index with a positive constant. Further, the IM set is closed under addition and 

multiplication operations, meaning that combining two heterogeneity indices X1 and X2 yields another heterogeneity index which 

belongs to the IM set. This is a crucial feature as it allows us to create composite indices by blending different measures of 

heterogeneity. By doing so, we can gain a deeper understanding of the degree of network heterogeneity and develop more 

accurate heterogeneity indices. Consequently, the concept of the IM set can provide a valuable framework for comprehending 

and quantifying the heterogeneity of graphs and complex networks. 

2.2 Complex Recursive Networks 

Complex networks have been the subject of study across many scientific disciplines, as they provide valuable models for 

understanding natural systems. These networks consist of nodes that are connected by links, forming a complex web of 

interdependent relationships [2]. Recursive networks are a special type of complex network that is characterized by a topology 

derived from a recursive relationship. These networks are neither completely regular nor completely random, and are particularly 

useful in the fields of science and engineering. In the following sections, we will describe five important recursive networks and 

their applications. 

 

2.2.1 Stirling Network 

The Stirling number [3] of the first kind, denoted by s(n, k), is a mathematical concept used in various combinatorial problems 

and analysis. It represents the number of ways to partition a set of n elements into k non-empty cycles, such that each element 

belongs to exactly one cycle. The value of s(n, k) can be calculated using the following equation : 

 

(1) ( , ) ( , )
n

c n k s n k
k

 
= = 
 

 

 

A family of labeled and undirected graphs can be derived from the table of Stirling numbers of the first kind. These graphs have 

been extensively studied for their properties and can be used as a basis for connecting various types of networks. The Stirling 

network has found applications in various fields, such as providing a deadlock-free and congestion-avoiding routing algorithm. 

It is also used in the construction of very large-scale integration circuits (VLSI) and complex networks. A modular approach has 

been proposed for constructing these networks [3]. 

Stirling networks are characterized by their multiple connections between nodes, which provide them with an important 

feature: fault-tolerance. If a path in the network fails, there will always be an alternative path for messages to pass through. This 

ability to control errors in the face of faulty nodes or broken links is an important advantage of Stirling networks. In addition, 

several classes of parallel algorithms can be optimally implemented using such networks. 

 An undirected graph with n vertices, corresponding to the adjacency matrix SMn, is called Pascal graph SGn of order n; 

where n represents the number of nodes in the Stirling graph. The set of vertices and edges of this graph is represented by V={v1, 

v2,...,vn} and E(SGn) respectively. According to the adjacency matrix, the vertices of the SGn graph are constructed from V1 to Vn 

respectively and in each step, one node is added to the graph. The diameter of the Stirling network with n nodes can be calculated 

by 1

2
log 1n+  − 

. Stirling networks can grow recursively . 

 To generate the network adjacency matrix of Stirling network, first the table of Stirling numbers of the first type must 

be obtained from the following recursive relation. (The initial conditions are valid for k>0.) [3] 

 



Heterogeneity Characterization of Recursive Line Networks 

55 

(2) 

1

1

0 0
1, 0

0 0

n n n
n

k k k

n

n

+     
= +     

−     

     
= = =     

     

 

 

In other words, the table of Stirling numbers of the first type, stn,k means that it consists of n distinct elements and contains k 

cycles. Some properties of Stirling numbers are expressed in the following relation (for n>1) [3]. 
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The detailed and supplementary information about the Stirling table of the first type and the different orders of these networks, 

as well as the specifications related to other correlations, are described in [3]. By using the recursive relation governing this 

network, to build the graph SGn, the previous step SGn-1 should be used. Considering this feature of the graph, the Stirling graph 

can be implemented and displayed for any order. Figure 1 depicts the Stirling graph of the sixth order (i.e. n=6). 

 

 
Figure 1. A Stirling network of order sixth (n=6) 

 

2.2.2 Pascal Network 

Over the past few decades, researchers have conducted numerous studies on Pascal's graphs and have discovered many new 

features. The structural aspects of the network were first examined more than twenty years ago, revealing that Pascal's graph 

possesses unique properties [4]. Blaise Pascal first introduced Pascal's triangle in the mid-17th century, which plays a vital role 

in constructing Pascal's matrix. Different models of this graph have been used in network integration and topology, including 

computer networks where its properties are used to assess network stability. The distinctive structural characteristics of Pascal's 

graph distinguish it from other types of graphs [4]. 

 Pascal graph (PG), which is the same as the Pascal matrix (PM), can be constructed from the Pascal's triangle. The set 

of vertices and edges of this graph is represented by V={v1, v2,...,vn} and E(PGn) respectively. According to the adjacency matrix 

of the graph, the vertices of PGn graph are constructed from V1 to Vn, respectively. In each step, one node is added to the graph 

[5]. Some features of Pascal graphs are as follows: 

• Pascal graphs are simple and recursive. 

• Pascal's graph PG(i) is planar for 1<i <7; but it is un-planar for high degrees. 

• Node V1 is adjacent to all nodes of Pascal's graph; this means that its first vertex (V1) is connected to all other adjacent 

vertices. 

• In Pascal graph, node Vi is adjacent to node Vi+1 for i ≥ 1 

• The vertices of Pascal's graph have at least 2 connections from degree greater than or equal to 3 

• In Pascal's graph, none of the even-numbered vertices are adjacent to each other 

• PGi,j refers to the jth element of the ith row of the Pascal's triangle; where rows and elements begin with zero. This 

network can be obtained from the following recursive relation [5]. 

•  
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Pascal network has several properties and features that have been described with details in [6]. In addition, in [6], constructing 

the adjacency matrix and different orders of the network has been explained. Figure 2 depicts a Pascal network with the order of 

eight (n=8) . 

 

 
Figure 2. A Pascal network of order eight (n=8) 
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2.2.3 Binomial Network 

The investigation of Pascal's triangle with entries reduced to module 2 has been a subject of numerous researches. Studies have 

been conducted on the parity of binomial coefficients, the geometrical structure of the binomial graph, and its similarity with the 

Sierpinski triangle [7]. The adjacency matrix of the binomial graph is constructed from Pascal's triangle of module 2. These 

graphs have been used to display a number of useful features including the Fibonacci sequence. Additionally, the binomial 

networks possess various properties such as the Golden mean, Lucas number, and several other properties related to Pascal's 

triangle [7]. 

 For each non-negative integer n, a binomial network Bn can be defined, whose vertices are represented by the set {vj: j= 

0, 1,..., 2n-1}. The nodes in this graph grow exponentially at each stage, and its edges are represented by the set 

( ){{ , }: 1 mod 2 }
n i j

i j
E v v

j

+ 
=  

 

 that can be defined for 0
0, 0, 1

0
i j

 
= = = 

 

. Therefore, every binomial network for the vertex V0 has a self-

loop; but for the rest of the vertices, it is a simple graph without self-loops. Moreover, in the binomial graph, n

k

 
 
 

 , k = 0,1,...,n-

1, there is a number of vertices of degree 2k and the degree of vertex V0 is equal to 2n+1. Therefore, the sum of the degrees of the 

vertices in the binomial network Bn can be determined from the following equation [7]. 
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The construction of the adjacency matrix for the binomial network, A(Bn), is discussed in [8]. The matrix elements are obtained 

using the Kronecker product. To build a binomial network, a recursive relationship is used based on the previous stage, Bn-1. This 

recursive feature allows for the construction of networks of any order. Figure 3 illustrates the structure of a fourth-order (n=4) 

binomial network. 

 

 
Figure 3. A binomial network of order four (n=4) 

 

2.2.4 Fibonacci Network 

Fibonacci graphs are a family of graphs derived from the Fibonacci sequence. By exploring the properties of this sequence and 

the relationships between its terms, researchers have identified various types of graphs with distinct characteristics and 

applications. In general, Fibonacci graphs can be categorized into two main types, which are described in detail below. 

The first category of Fibonacci graphs is primarily used in chemistry and physics. These graphs are often derived from 

the molecular structure of materials, utilizing the relationship governing the Fibonacci sequence. Various polynomials can be 

analyzed from these graphs [9], and several studies have focused on describing their structures [10]. For instance, [10] discusses 

the use of independence polynomials, Fibonacci trees, and various mechanisms for implementing Fibonacci graphs to create the 

molecular structure of benzyl radical. 

The second category of these graphs is utilized in mathematical sciences, which will also be examined in this study. In 

this category, the Fibonacci sequence is used on its own, resulting in the creation of Fibonacci networks. These networks are 

introduced below [11]. The Fibonacci series is a sequence of numbers that can be obtained from the following equation [11]: 

 

(6) 
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The Fibonacci sequence is a series of numbers where each number is the sum of the two preceding ones, except for the first two 

numbers. The first two numbers in the series are 0 and 1, and the sequence continues as 0, 1, 1, 2, 3, 5, 8, 13, 21, and so on. 

These numbers are named after the 13th-century Italian mathematician Leonardo Fibonacci. 

In a Fibonacci network, the number of nodes can take on any value from the Fibonacci sequence. To establish 

connections between the nodes, first, all the nodes in the network must be converted to their respective Fibonacci codes. To 

obtain the Fibonacci code of a number, one must find the first number in the Fibonacci sequence that is smaller than or equal to 

the given number. Then, the given number is divided by the first member of the sequence, and the remainder of the division is 

divided by the previous number in the sequence. This process is continued with successive divisions until the divisor becomes 

zero. Finally, all the quotients from the first to the last division form the first digit to the final digit in the Fibonacci code from 
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right to left. To better understand how to convert numbers to Fibonacci codes, an example of converting the number 7 to a 

Fibonacci code is provided in Figure 4. 

 
Figure 4. Converting number 7 to a Fibonacci code 

 

Once the Fibonacci codes have been determined, the next step is to construct the adjacency matrix by establishing connections 

between nodes. This requires pairwise comparison of the codes, with one important consideration being that the codes must be 

of equal length. To ensure this, additional zeros can be appended to the end of shorter codes. After ensuring equal length of 

codes, comparisons are made between them. The result of each comparison determines whether the corresponding nodes should 

be connected or not. Specifically, if only one bit differs between two codes, then the corresponding nodes are connected, and the 

adjacency matrix is updated accordingly by setting the corresponding element to 1. As an example, Figure 5 shows the Fibonacci 

network of order 6 (i.e., n=6), which corresponds to 8 nodes. 

 

 
Figure 5. Fibonacci network of order six (n=6) 

 

2.2.5 WK-Recursive Networks 

WK-recursive networks are very similar to Sierpinski graphs. In fact, these networks are represented by WK(p,n), which are 

almost equivalent to Sierpinski n

p
S . Klavžar and Milutinovic [12] have introduced such graphs named as Switching Tower of 

Hanoi (STH) for p pegs and n discs. These graphs are shown with symbol n

p
S  where n indicates the number of vertices and p 

denotes the number of pegs. In this study, it is called Sierpinski graph . 

Definition 3 [13]: For p  and 
0

n  (natural numbers greater than or equal to zero), Sierpinski graph n

p
S  can be defined 

by the following equation. 
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Some researchers have named Sierpinski graph 
3

nS  as Sierpinski gasket. The structure of this network is shown in  Figure 6 [13]. 

 

 
Figure 6. Sierpinski gasket network of order four (n=4) 

 

 The set of vertices in both Sierpinski and WK-recursive networks are defined by ( ( , )) ( )n n

p
V WK p n p V S= = . The only 

exception is that the WK(p, n) network has p additional open edges at its terminal vertices. Open edges are used for further 

network development. WK-recursive networks have several features that are described below [14]. 

 WK(6,2) network, as shown in Figure 7, is an example of a network that can be used in integrated circuits. In recent 

years, there are many results on fault tolerance connectivities. Chen et al. [15] have extensively studied the structural properties 

of these networks, including diameter, connectivity, and Hamiltonian cycles, and have explored routing and broadcasting 

algorithms. Fang et al. [16] have also presented a simple broadcasting algorithm for such networks. These networks are also 

useful for designing and implementing message passing algorithms. 
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Figure 7. WK-recursive network of order 2 with six open edges 

 

2.3 Line Graphs 

In a non-empty and undirected graph G, the line graph of G is another graph, denoted by L(G) that represents the adjacencies 

between edges of G. L(G) is constructed such that for each edge in G, a vertex in L(G) is created and for every two edges in G 

that have a vertex in common, an edge between their corresponding vertices in L(G) is generated. Hence, to construct the line 

graph L(G), the edges in the graph G are mapped to the nodes and the nodes in the G are mapped to the edges. This simple 

strategy is generally used to obtain line graphs in graph theory. By transforming the graph G into a line graph L(G), graph 

clustering is improved; moreover, the line graph L(G) is more structured than the original graph G. The noteworthy point is that 

if the graph G has n vertices of degree r-regular, then the line graph L(G) will also be regular and of degree 2(r-1) [17]. Figure 8 

shows a graph (left) and its corresponding line graph: 

 

 
Figure 8. A graph (left) and its corresponding line graph 

 

3. THE LITERATURE 

During the past years, some of researches have been conducted with the focus of complex networks were based on criteria can 

better express the heterogeneity hidden in the networks. 

Researchers have proposed various criteria to assess and quantify the network heterogeneity in recent years. A relatively 

comprehensive review of such indices, along with their respective advantages and disadvantages, has been reported in [24]. 

However, it is worth noting that a comprehensive review of heterogeneity measures has yet to be conducted independently. Thus, 

undertaking such research is an invaluable task that warrants further exploration. In this section, we introduce the five 

heterogeneity measures that we employ in this study. It is important to note that different heterogeneity measures can be classified 

into three categories; i.e., the vertex-degree-based indices (VDB) [24], the graph spectrum-based indices [23], and the 

information theory-based indices [24]. 

One of the most significant and widely used VDB heterogeneity indices is the H-index, proposed by Estrada [18]. This 

heterogeneity metric is defined as follows; the H-index is equal to the square of the difference of the inverse square root of the 

endpoint degrees of any two vertices connected by an edge in the graph. It can be written as 

 

(8) 
1/2 1/2 2

( , )
( ) ( )

u vu v
G d d − −


 = − E

 

The H-index is a standard metric, with a value of 0 (lower bound) indicating a regular graph and a value of 1 (upper bound) 

corresponding to star-like graphs. Its characteristics, advantages, and disadvantages are described in details in [24]. In this study, 

we employ the H-index to quantify the heterogeneity of recursive line graphs. 

In addition to the H-index, Estrada and Estrada [19] proposed another heterogeneity index called the distance-sum; which is 

the second measure of the heterogeneity used in this study. The rationale behind including this index is that the total distance 

distribution in a network is assumed to be equivalent to the node degree distribution in the H-index. While the H-index defines 

the function as the square root of the node degree, the distance-sum criterion defines the function f as a sum of the distances of 

a node from all other nodes. By adjusting the desired parameter in this measure, one can obtain other indices such as the Winner 

(sigma) index, closeness centrality [20], and Balaban index [21]. 

The third heterogeneity index used in this article is the normalized degree variance, which was introduced as a heterogeneity 

measure by Smith and colleagues [22]. The authors claim that their proposed measure is unbiased with respect to the order and 

density of the underlying graphs. However, according to [24], the H-index proposed by Estrada [18] has two main drawbacks. 

First, for quasi-complete graphs that contain isolated nodes, the H-index can lead to division by zero, resulting in an error. 

Second, it is sensitive to the order and density of the networks, making it a skewed index. 



Heterogeneity Characterization of Recursive Line Networks 

59 

The heterogeneity measures discussed above belong to the vertex-degree-based (VDB) category and are incompatible with 

each other. In this study, a fourth heterogeneity index, based on the network spectrum, was employed. Safaei et al. [23] introduced 

a normalized measure to assess the heterogeneity properties of graphs complex networks; which is dependent on the spectral 

theory of graphs. The authors demonstrated that their proposed measure has a lower bound of 0 and an upper bound of 1 for 

regular and star-like graphs, respectively. Through simulation experiments, the proposed energy index was shown to accurately 

explore the structural differences of networks while maintaining low computational complexity. 

In [24], Emadi et al. introduced a novel and efficient approach based on discrete and generalized graph entropies-energies. 

They proposed several heterogeneity measures to quantify the structural heterogeneity properties of underlying graphs. The 

proposed measures can also be used to classify and compare graphs with different structures. We employed such measures as 

the fifth index of network heterogeneity in the current study. The authors demonstrated how the heterogeneity measures such as 

Shannon entropy, von Neumann entropy (quantum entropy), and the generalized graph entropies-energies can be utilized to 

evaluate the degree of heterogeneity in graphs and complex networks. 

 

4. EXPERIMENTAL RESULTS 

In this section, we begin by analyzing the frequency distribution of eigenvalues in recursive line graphs. A key question that 

arises is whether the line graph of Erdős-Rényi (ER) networks also follows a binomial distribution, given that the degree 

distribution of the original ER graph is binomial. To address this question, researchers have studied a specific distribution of line 

graphs. In a previous study [17], the authors demonstrated that the degree distribution of the original graph and its corresponding 

line graph are highly similar and cannot be distinguished from each other. 

The researchers found that the distribution of eigenvalues in ER line graphs is noticeably different from that of their 

original graphs, despite the degree distributions of the two being very similar and indistinguishable from each other. Specifically, 

while the eigenvalues of ER graphs follow a semicircular distribution, the eigenvalues of their line graphs do not. This suggests 

that the line graph of a network is distinct from its main network in terms of eigenvalue distribution. Figure 9 illustrates the 

distribution of eigenvalues for both recursive graphs and their corresponding recursive line graphs. 

 

 

 

 

Figure 9. Distribution of the eigenvalues in recursive networks and the corresponding recursive line graphs 

 

In the following analysis, we aim to determine whether five commonly used heterogeneity measures can effectively distinguish 

the structural complexity of line graphs in recursive networks. To accomplish this, we have plotted numerical values obtained 
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by the five heterogeneity measures as a function of the size of the corresponding line graph in Figure 10. The average values for 

each of the five heterogeneity measures were calculated and presented in the form of a linear diagram based on empirical samples 

obtained from simulation experiments. 

 

 

 

 
Figure 10. Comparison of the irregularity measures for binomial, Fibonacci, Pascal, Stirling and WK-recursive networks 

 

Based on the information presented in Figure 10, it can be observed which of the heterogeneity measures can effectively 

differentiate between the corresponding recursive line graphs. As the size of the recursive line networks increases, the level of 

heterogeneity tends to decrease. However, it should be noted that for larger recursive line networks, the amount of heterogeneity 

would tend to be a relatively constant quantity. The important finding from the diagrams is that even in recursive networks, the 

significant heterogeneity is not very distinct. Therefore, heterogeneity indices can only report a small fraction of the heterogeneity 

of star-like graphs. Another crucial point is that for a certain size of recursive line graphs, the heterogeneity values do not differ 

significantly from each other. It is essential to mention that the heterogeneity indices resulting from the parameter setting are 

often much lower than what occurs due to the difference in the models' structural complexity. Furthermore, the diagrams 

demonstrate that the heterogeneity index derived from graph energy has been more successful than the other heterogeneity 

measures in distinguishing between different recursive line graphs. It is evident that an important application of any suitable 

heterogeneity measure is whether the related metric can provide a proper classification of the recursive line graphs. 

In addition to heterogeneity measures, the synchronization parameter, Q, can also be used as a parameter for network 

analysis. Q is calculated by taking the ratio of the second smallest non-zero eigenvalue of the Laplacian matrix 
2

m  to the largest 

eigenvalue of the same matrix 
n

 . In this section, we aim to investigate the potential use of this parameter alongside other 

heterogeneity measures through a qualitative experiment. 

In order to accomplish this, we have referred to the report by Estrada [25] on the paradox of heterogeneity. This report 

explains how increasing the heterogeneity of a network can actually result in a decrease in its synchronization degree and average 

geodesic distance. The issue of synchronization is critical in network dynamics and has significant implications for machine 

learning and wireless sensor networks. To assess the level of heterogeneity in the recursive line networks, we have calculated 

the synchronization parameter (Q) along with other heterogeneity indices, as shown in Table 1. Additionally, we have calculated 
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Pearson's correlation coefficient to determine the correlation between the natural logarithm of each heterogeneity measure and 

the natural logarithm of Q. The slope and the intercept of the fitted regression line using the natural logarithm of Q and the 

natural logarithm of the desired heterogeneity measure are expressed in the following equation. 

(9) 2
/

n
Q  =  

 

Table 1. The heterogeneity indices of recursive line networks 
quantum 

Entropy 
index 

Normalized 

variance 
index 

Energy 

index 

Distance 

sum 
H index Kurtosis Skewness Q M N Network 

0.0263 0.0499 0.7829 0.0024 0.0378 3.0092 0.8284 0.1069 7448 365 Binomial 

0.0038 0.0021 0.1332 0.0009 0.0059 3.0092 0.6847 0.0368 2131 420 Fibonacci 

0.0015 0.0002 0.0141 0.00006 0.0003 61.0161 -7.7470 0.0115 1250 315 WK-Recursive 

0.0181 0.0277 0.7291 0.0056 0.0285 2.7610 0.5644 0.0820 8571 409 Pascal 

0.0044 0.0077 0.4724 0.0021 0.0007 3.7014 -0.8419 0.0339 5157 389 Stirling 

-0.9786 -0.9600 -0.9585 -0.8880 -0.7694 0.8553 0.8476    
Pearson 

correlation 

S
ta

ti
st

ic
s 

-0.1880 -0.2480 -0.2951 -0.8182 -0.2176      Slope 

-5.9793 -6.7722 -3.6522 -8.9207 -7.8865      Intercept 

In addition, Estrada [25] also highlights the significant relationship between the synchronization parameter, Q, and the clustering 

coefficient in terms of the network's robustness, making it a valuable index for analyzing the resilience of graphs and complex 

networks. 

 

 

Figure 11. Variations of the synchronization parameter (Q) in recursive line networks 

 

Figure 11 depicts the values of the synchronization parameter Q for the recursive line networks. This visualization provides a 

better understanding of the changes in the Q parameter across different networks. The WK-recursive line network exhibits the 

lowest value of the synchronization parameter Q, while the binomial line network has the highest value, indicating convergence 

in this network. 

 

5. CONCLUSIONS AND FUTURE WORK 

Communication networks play a crucial role in facilitating various human activities, including specialized tasks and personal 

well-being. However, complex and social networks, which are integral to our daily lives, are often overlooked in terms of their 

ability to serve these purposes and are vulnerable to a range of challenges. In recent years, several indicators have been introduced 

to estimate the level of heterogeneity in networks, with many of these indicators being based on the degree of nodes in the graph. 

In this article, we utilized a set of key measures to assess the heterogeneity present in line networks that correspond to various 

types of recursive networks, including binomial, Pascal, WK, Fibonacci, Stirling, and WK-recursive networks. Through a range 

of simulation experiments, we demonstrated the effectiveness of these measures in quantifying and evaluating the level of 

heterogeneity in the structure of recursive line networks. It is worth noting that heterogeneity in the structure of recursive line 

networks can trigger structural changes in the matrices derived from such graphs. Further research can build upon the work 

presented in this paper by developing a novel and efficient heterogeneity measure that explores the structural complexities of 

recursive line graphs from a heterogeneity perspective. 
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