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Abstract

This paper presents a comprehensive modeling framework for managing the complexities inherent in modeling dynamic and intelligent embedded
and cyber-physical systems (CPSs). Leveraging the scenario-aware dataflow (SADF) model of computation (MoC), our framework effectively
captures CPS dynamism through controlled scenario representations. We establish denotational-style semantics within the Formal System
Design (ForSyDe) framework and operational-style semantics tailored for practical industrial implementation. Integration of SADF MoC into
ForSyDe-SystemC exploits modern C++ language features, offering type- and size-safety, model introspection, parallel simulation, and foreign
model integration. The contributed SADF extension possesses the capability to seamlessly interconnect with other MoCs, thereby facilitating
heterogeneous system modeling. Demonstrational examples, including an encoder/decoder system and an MPEG-4 decoder algorithm for
the simple profile, attest to the framework’s correctness and practicality. We also introduce a tool flow for automated synthetic benchmark
generation, essential for assessing the scalability and performance of ForSyDe-SystemC SADF models in diverse conditions. The extended
modeling framework, examples, and supporting tools are available as public domain code.

Keywords: Modeling Abstractions, Scenario-Aware Dataflow, Embedded Systems, Cyber-Physical Systems, Formal System Design, Streaming
Applications.

1. Introduction

The design of dynamic embedded and cyber-physical systems (CPSs), as well as systems on chip (SoCs), presents significant
challenges due to their complex and heterogeneous nature, coupled with real-time constraints and changing operating environments.
Traditional application models and design methods based on static structure and pre-determined execution order of components
are insufficient to capture the expected dynamic behavior of these systems in response to their changing environment [21]. This
problem is intensified in modern smart systems equipped with machine learning and adaptive behavior [6].

In the context of electronic system-level (ESL) design, system-level models are a means for expressing the functional behavior
of the system, together with its desired properties and requirements, to be satisfied throughout the design flow [12]. In this
case, very often a standard language such as SystemC [2] is used to model the application behavior and the target platform.
Unfortunately, these languages are unable to capture both the required dynamic behavior of the system and the desired properties
such as realtimeness, safety, etc. for a robust system design flow.

During execution of a SystemC model, an elaboration phase is perfomed followed by a discrete-event (DE) simulation [2].
While it is possible to spawn new processes during simulation, the model structure cannot be modified dynamically after elaboration.
To lift this constraint, language and library extensions to SystemC are suggested [1, 15, 20]. However, these approaches concentrate
on providing an infrastructure for modeling a dynamic functional behavior for the application while the expressed models lack the
required analyzability and synthesizability.

Other works approach the problem at a higher level and map dynamic models of computation (MoCs) on top of SystemC [10, 3].
Dataflow MoCs are a proper candidate for this purpose and there is a spectrum of them which trade-off expression of dynamic
behavior with analyzability and implementation efficiency [18]. More classic dataflow models such as synchronous dataflow
(SDF) are supported in many SystemC-based frameworks; however, they completely lack the dynamic aspect. In contrast, the
scenario-aware dataflow (SADF) MoC [22] provides a flexible and adaptable framework that can capture the dynamic behavior
of these systems and also enable efficient mapping of system components to hardware resources. This modeling approach can
facilitate ESL design flow by allowing designers to efficiently explore different design trade-offs and optimize system performance.
Moreover, it can enable rapid prototyping and testing of complex systems, reducing design time and improving overall system
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reliability. Therefore, the SADF MoC is of high interest for ESL design flows, particularly for dynamic embedded systems, CPSs,
and SoCs.

The SADF MoC is an instance of the more generic concept of system-scenario-based design [8]. Instead of coping with
the dynamic nature of applications by considering the corner case or designing for separate use cases separately, this approach
combines several statically analyzable scenarios in a systematic manner. System-scenario-based design can be incorporated in all
design layers from high-level models, which is the focus of our work, down to hardware platform layers. Recently, this approach
has been investigated for novel applications such as deploying deep neural networks on the edge [13].

Unfortunately, there is no available modeling framework with appropriate support of the SADF MoC based on standard
ESL languages. The closest reported work is by Bonna and others [7], which provides a functional model, together with an
implementation based on the functional language Haskell. Although the authors sketch a template for mapping to what they
call high-level languages, their solution is more appropriate for code generation with the sole purpose of simulation, rather than
directly capturing models early in the design flow. We provide a more comprehensive comparison to this approach using a case
study in Section 4.

In a study focused on the analysis of formal models for avionics systems design [9], the authors advocate for the extended
framework above [7]. They assert that a set of MoCs, each tailored for specific aspects of avionics systems, aligns well with
the requirements of this domain. According to the authors, the SADF MoC is deemed more suitable for implementing safety,
components with runtime reconfiguration, and supporting modern architectures within avionics systems. In comparison, our work,
which shares the same underlying Formal System Design (ForSyDe) formalism, also supports the synchronous (SY), SDF, and
SADF MoCs, among others. Notably, our approach leverages a more industry-friendly system design language, provides MoC
interfaces (MIs) as a mechanism for seamless integration of these MIs as heterogeneous models, and supports co-simulation
wrappers for legacy IP integration.

The ForSyDe-SystemC modeling framework [3] provides the formal modeling abstractions of ForSyDe in the de-facto system
modeling language SystemC. This framework supports the general untimed (UT) MoC with a high level of dynamism, however
lacking analyzability, and the highly analyzable, yet restrictive SDF MoC. This paper extends ForSyDe-SystemC with the SADF
MoC. The new MoC is integrated with already available ones using MoC interfaces to support heterogeneous embedded and
CPSs design. Another advantage of our approach is that the new extension is mapped onto the common abstract MoC layer of the
framework which provides facilities such as parallel simulation [5], foreign-model integration [4], and introspection. The latter is
a highly useful facility which allows exporting the expressed models into an intermediate representation for further analysis and
synthesis by external tools. We also extend the introspection mechanism in this work to report the runtime state of the dynamic
models captured in the newly added SADF MoC.

The rest of this paper is organized as follows. Section 2 provides the background on the modeling concepts required for an
in-depth understanding of this work. Section 3 contains the main contribution of the work and provides the semantics and syntax
of SADF models for implementation in ForSyDe-SystemC. Section 4 provides empirical results to justify the usefulness of the
framework and Section 5 concludes the paper.

2. Basic Concepts

2.1. Scenario-Aware Dataflow

Dataflow MoCs are frequently employed to articulate the behavior of signal processing and streaming applications. Earlier
iterations of dataflow models, exemplified by the one introduced in Kahn’s seminal paper [11], serve the purpose of delineating and
expressing parallel programs intended for execution or simulation. Nevertheless, designers often harbor an interest in assessing the
absence of deadlock in such programs and formulating a scheduling strategy characterized by bounded buffers for unbounded
execution. Regrettably, these issues prove to be undecidable within the domain of Kahn process networks (KPNs) and general
dynamic dataflow graphs [14]. In contrast, more constrained dataflow models, such as the SDF MoC, strike a balance between
expressiveness and analyzability, as well as implementation efficiency. A comprehensive examination of these aspects can be
found in the work of Stuijk et al. [18].

The scenario-aware dataflow (SADF) MoC was initially introduced by Theelen and colleagues [22]. SADF represents an
augmentation of the SDF MoC, systematically incorporating dynamic behavior into the model while preserving a robust level of
analyzability. Within an SADF model, two fundamental components take center stage: kernels and detectors.

Kernels serve as the fundamental building blocks within SADF models. They share similarities with actors found in other
dataflow models, although the behavior of a kernel is contingent upon the presently active scenario. Kernels exhibit the capability
to exhibit distinct consumption and production rates, execution functions, as well as execution durations, all contingent upon the
specific scenario in play. In contrast, actors within SDF models maintain fixed rates and execution functions [22].

Detectors assume the pivotal role of orchestrating the behavior of kernels and discerning the current system scenario. These
detectors take the form of Mealy-like finite-state machines (FSMs), consuming data tokens and generating control tokens. Within
the realm of SADF, each kernel is endowed with multiple scenarios, but only one scenario can be activated for a given kernel
at any given moment. It is the task of detectors to ascertain the active scenarios and relay this information to the kernels. The
detector offers versatility in implementing various control strategies, including state machines, decision trees, and Petri nets. In
each scenario, the collective behavior of kernels within the graph resembles that of an SDF graph. It is worth noting that, in the
original definition of SADF models, detectors are represented using a Markov chain. Nonetheless, for the purposes of this work,
we adhere to the FSM-based FSM model, which aligns more seamlessly with functional modeling objectives [22].
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Fig. 1: An illustration of a scenario-aware dataflow graph. The top figure portrays the SADF model of a simple encoder/decoder
system, featuring detectors (in orange), kernels (in blue), and ordinary actors. In the sub-graphs presented at the bottom are the
synchronous-dataflow equivalents of the model in each scenario. Additionally, the graph parameters and the schedule of the graph
(repetition vectors) for each scenario are visually depicted.

Each kernel features a solitary control input that is under the purview of a detector. This arrangement arises from the fact that,
at any given moment, each kernel is capable of executing only a single scenario. Importantly, the detector has the capacity to
generate control commands at varying rates across different scenarios.

Fig. 1 serves as an illustrative example of an SADF graph, which models an encoder/decoder system. First, this system
generates a sequence of data tokens designated for transmission (T). Subsequently, depending on the currently active scenario,
these tokens undergo encoding through either an increment operation (E+), decrement operation (E−), or a process that combines
two consecutive tokens (Ec). On the receiving end, the transmitted tokens are decoded (D) and subsequently emitted via the
receiving channel (R).

At the top of Fig. 1, the SADF graph is depicted, featuring orange circles to symbolize detectors, blue circles to represent
kernels, and green circles denoting classic SDF actors. Notably, dashed arrows interconnecting the detectors and the kernels
serve as control signals, facilitating the transmission of the current scenario information. It is worth noting that the consumption
rate of the control signal on the kernel side, although not explicitly illustrated in the figure, is consistently set to one. Within
this framework, scenario functions, potentially implemented in the form of tables, govern the operational scenario of the actors,
specifying the data production-consumption rates for each kernel and detector across various scenarios.

It’s important to observe the various modeling patterns evident in this example. Kernel T consistently maintains the same
functionality, generating input tokens. However, these tokens are directed to different destinations in each scenario. On the encoder
side, encoding algorithms are realized through distinct kernels–E+, E−, and Ec–with one active in each scenario. Conversely, a
singular decoding kernel, denoted as D, applies the reverse algorithm, contingent upon the currently active scenario.

2.2. The ForSyDe Framework
ForSyDe is a powerful design framework for complex embedded systems, SoCs, and CPSs [16]. It is based on a formal and

mathematical foundation, which makes it well-suited for verification and validation. ForSyDe is designed with the following goals
in mind.

ForSyDe stands as a potent design framework tailored for intricate embedded systems, SoCs, and CPSs [16]. It finds its roots
in a rigorous and mathematical underpinning, rendering it highly adept for purposes of verification and validation. The overarching
design objectives of ForSyDe are as follows.

• System design should begin at a high-level of abstraction. The designer concentrates on the holistic functionality of the
system and not worry about low-level implementation details. This approach empowers the designer to render decisions that
remain untethered to the constraints of particular implementations.

• A design ought to establish a robust groundwork for the application of formal methods, which can subsequently be employed
to ascertain the correctness of a system’s design.

• The gap between the abstract specification of the system and its tangible implementation should be traversed through
meticulously defined transformations and refinements. This implies that the designer should employ methodologies to
transmute the high-level system specification into a low-level implementation that not only demonstrates efficiency but also
adheres to the system’s requirements.
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Fig. 2: An illustrative instance of a heterogeneous ForSyDe-SystemC model including processes and MoC interfaces with
structural hierarchy. Leaf processes are instantiated using process constructors. Wrapper processes have the potential to facilitate
co-simulation with external models.

The ForSyDe modeling framework initially found its implementation in the functional programming language Haskell, which
aligns seamlessly with the foundational principles of ForSyDe. However, Haskell may be less familiar within the realm of industrial
engineering. To enhance the practical applicability of ForSyDe, it has been transposed onto the system-level design language
SystemC [3]. ForSyDe-SystemC harnesses the advanced capabilities inherent in C++, including template meta-programming,
lambda functions, and more, to actualize the core tenets of the ForSyDe modeling framework.

As depicted in Fig. 2, a system model within ForSyDe is structured as a hierarchical network of processes. Heterogeneous
modeling is essential for CPSs, thus, ForSyDe exploits MoCs to describe the functional behavior of different parts of a system
using different semantics. As a result, the process network consists of processes belonging to specific MoCs, plus MIs between
processes of different MoCs. The only means of inter-process communication and synchronization in ForSyDe is through signals.
ForSyDe-SystemC supports a range of MoCs, such as UT MoC, including its dataflow variants, SY MoC, continuous-time (CT)
MoC, and the distributed discrete-event (DDE) MoC, among others.

The process network depicted in Fig. 2 comprises three processes psrc, psys, and pdst. The composite process psys, in turn, is
composed of two leaf processes and two MIs. The amplifier process pamp acts as a wrapper to incorporate an external model,
running in an external simulator into the modeling framework. Note that all signals, process ports, and leaf processes built using
process constructors belong to a specific MoC.

A noteworthy characteristic of the ForSyDe modeling framework lies in its exclusive use of process constructors for the
instantiation of all leaf processes and MIs. For instance, consider the construction of the SDF actor p f ilter through the employment
of combS DF, along with the specification of production and consumption rates denoted as rp and rc, and the actor function f .
This utilization of process constructors empowers designers to leverage a collection of pre-designed templates, readily accessible
within the library, to define various components within the system. However, it is imperative to recognize that this constraint
enhances the model’s analyzability, as it ensures that the semantics governing communication and execution are predetermined
and distinct from the core computational operations performed.

3. Main Idea

3.1. The SADF MoC in ForSyDe

Within the framework of ForSyDe, a generic untimed (UT) MoC is established, boasting a degree of expressiveness on par
with that of the general dynamic dataflow model. In this context, we introduce the SADF MoC, characterized by two pivotal
process constructors: kernelmn and detectormn. These constructors are instrumental in the creation of SADF kernels and detectors,
respectively, featuring multiple inputs and outputs. It is pertinent to note that these processes operate on UT signals denoted as
ṡ ∈ Ṡ , wherein event consumption and production are contingent upon events denoted as ė ∈ Ė.

Fig. 3 provides the comprehensive specification of these process constructors. The kernelmn constructor accepts two parameters
and yields a process pk : Ṡ × Ṡ m → Ṡ n with characteristics as follows: it possesses one control input, m data inputs, and n data
output signals. The first parameter entails a function f , expressed as f : Ė × Ṡ m → Ṡ n. This function operates on the scenario
event ė ∈ Ė to map m input sequences Ṡ m to n output sequences Ṡ n based on the scenario event. The second parameter, denoted as
ψ : Ė → Nm × Nn, represents the kernel scenario mapping. This mapping associates each scenario event ėψ ∈ Ė retrieved from the
control input with input token consumption rates rc, j; 1 ≤ j ≤ m and output token production rates rp,k; 1 ≤ k ≤ n. The partitioning
function π subdivides the signals in accordance with the aforementioned rates. In this manner, during the ith iteration, a sequence
of control events ai,c of length one, along with m sequences of data inputs ai, j, is provided to the function f . Consequently, n
sequences of data outputs a′i,k are generated.

As for detectormn, the process constructor requires five arguments to create an m-input n-output detector process pd : Ṡ m → Ṡ n.
First, the detector scenario function fds : Ė × Ṡ m → Ė, determines the next scenario wi+1 based on the current scenario wi and
m input sequences ai, j. The kernel scenario function fks : Ė × Ṡ m → Ṡ n uses the updated scenario along with the same input
sequences to generate scenario events a′i,k for n kernels on its outputs. Next, the detector scenario mapping ψ : Ė → Nn determines

123



Jun 2023, Volume 01, Issue 01

kernelmn( f , ψ) = pk

where

pk(sc, s1, . . . , sm) = (s′1, . . . , s
′
n)

f (ci, ai,1, . . . , ai,m) = (a′i,1, . . . , a
′
i,n)

ψ(ci) = (rc, rp), rc = (rc,1, . . . , rc,m), rp = (rp,1, . . . , rp,n)

π(νc, sc) = ⟨ci⟩, νc(i) = 1

π(ν, s j) = ⟨ai, j⟩, ν j(i) = rc, j; 1 ≤ j ≤ m

π(ν′k , s
′
k) = ⟨a′i,k⟩, ν

′
k(i) = length(a′i,k) = rp,k , rem(π, γ′k , s

′
k) = ⟨⟩; 1 ≤ k ≤ n

sc, s j, s′k , ci, ai, j, a′i,k ∈ Ṡ ; i, rc, j, rp,k ∈ N

(a)

detectormn( fds, fks, ψ,w0, rc) = pd

where

pd(s1, . . . , sm) = (s′1, . . . , s
′
n)

fds(wi, ai,1, . . . , ai,m) = wi+1

fks(wi+1, ai,1, . . . , ai,m) = (a′i,1, . . . , a
′
i,n)

ψ(wi+1) = rp, rp = (rp,1, . . . , rp,n)

π(ν, s j) = ⟨ai, j⟩, ν j(i) = rc, j; 1 ≤ j ≤ m

π(ν, s′k) = ⟨a′i,k⟩, ν
′
k(i) = length(a′i,k) = rp,k , rem(π, γ′k , s

′
k) = ⟨⟩; 1 ≤ k ≤ n

s j, s′k , , ai, j, a′i,k ∈ Ṡ ; wi ∈ E; i, rc, j, rp,k ∈ N

(b)

Fig. 3: Definition of SADF process constructors for kernel (a) and detector (b) with m inputs and n outputs.

the output productions rates rp,k based on the updated scenario. The initial scenario w0 and a tuple of fixed input consumption
rates rc ∈ Nn are the last arguments to detectormn.

Regarding the detectormn process constructor, the creation of an m-input n-output detector process pd : Ṡ m → Ṡ n necessitates
the provision of five arguments, leading to its definition as in Fig. 3b. Initially, we encounter the “detector scenario function”,
denoted as fds : Ė × Ṡ m → Ė, which plays the pivotal role of determining the subsequent scenario wi+1 based on the current
scenario wi and m input sequences ai, j. Following this, the “kernel scenario function” denoted as fks : Ė × Ṡ m → Ṡ n utilizes
the updated scenario, in conjunction with the same input sequences, to generate scenario events a′i,k for n kernels on its outputs.
Subsequently, the “detector scenario mapping” denoted as ψ : Ė → Nn comes into play, effectively ascertaining the output
production rates rp,k based on the updated scenario. Finally, the initial scenario w0 and a tuple of fixed input consumption rates
rc ∈ Nn conclude the set of arguments required for detectormn.

Consistent with the principles outlined in reference [16], the combination of the aforementioned process constructors, coupled
with the delay (or init) function, which introduces initial tokens onto signals (SADF channels), alongside the sequential, parallel,
and feedback process composition operators, collectively formulate the foundation of the SADF MoC.

3.2. Mapping SADF Processes onto the Refined Layer of ForSyDe

Fig. 4 shows mapping the key process types in the SADF MoC—as defined in Fig. 3—onto the ForSyDe abstract semantics.
The Init stages simply allocate space for input and output tokens with fixed rates. The Prep stage for the kernel process,
reads a scenario token ac from the control port, determines the consumption/production rates of input/output ports, resizes the
corresponding buffers in the process, and reads the required number of tokens from each of the input ports. The prepared input
buffers, together with the current scenario are passed to the kernel function to produce the outputs in the corresponding buffers in
the Apply stage. Finally, in each iteration, the Prod stage writes out the output buffers to the output ports.

Fig. 4 elucidates the mapping of key process types within the SADF MoC, as previously defined in Fig. 3, onto the abstract
semantics of ForSyDe. Within this context:

• The Init stages are primarily responsible for the allocation of space, setting fixed rates for input and output tokens.

• The Prep stage associated with the kernel process reads a scenario token ac from the control port. Subsequently, it
determines the consumption and production rates of input and output ports, adjusts the corresponding buffers within the
process, and retrieves the requisite number of tokens from each of the input ports.

• The prepared input buffers, in conjunction with the current scenario, are then forwarded to the kernel function, where they
are utilized to generate the outputs within the corresponding buffers during the Apply stage.

• Lastly, in each iteration, the Prod stage is responsible for writing out the contents of the output buffers to the output ports.

Regarding the detector process, the Prep stage consistently reads a predetermined number of tokens from the input sources.
Within the Apply stage of the detector, the process commences by updating the detector scenario. This update relies on the current
scenario and the acquired input data, with the aid of the detector scenario function fds. Subsequently, production rates are extracted,
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Fig. 4: Mapping SADF process constructors of Fig. 3 to the refined layer of ForSyDe for kernel (a) and detector (b) processes.

contingent upon the current scenario, thereby determining the appropriate sizing of the output buffers. Finally, the fks function,
representing the kernel scenario function, is applied to the current scenario and input buffers, leading to the generation of output
tokens. The Prod stage for the detector closely mirrors the one established for the kernel process.

3.3. Realization in SystemC
Following the mapping of processes to the refined layer, the SADF MoC is introduced as a novel addition to ForSyDe-SystemC.

This extension adheres to and builds upon the foundational principles initially delineated in the original work [3]. The tangible
implementation of the SADF MoC is contributed back to the principal repository of the framework1.

Notably, the modeling framework places significant emphasis on ensuring type and size safety for the data. Consequently,
several decisions made during the implementation deviate from a rudimentary or simplistic approach. Some of these distinct
considerations are briefly highlighted below.

• The kernelMN class, serving as the embodiment of the kernelmn process constructor, necessitates robust static type safety
across a variable number of arguments for both inputs and outputs. To accomplish this, variadic templates and partial
template specialization within C++ are judiciously employed to define such a class. Presented below is an excerpt of the
class declaration for kernelMN, wherein TOs represent output types, TIs denote input types, and TC corresponds to the
control token (scenario) type—each dynamically specified upon instantiation.

template <typename TO tuple , typename TC , typename T I t u p l e >
c l a s s kernelMN ;

template <typename . . . TOs , typename TC , typename . . . TIs>
c l a s s kernelMN< s t d : : t u p l e <TOs . . . > , TC , s t d : : t u p l e <TIs . . . > >

: p u b l i c SADF process
{

/ / I m p l e m e n t a t i o n
}

• In contrast to analogous methodologies documented in [7], scenario mappings denoted as ψ are implemented within the
processes as local tables. This approach is adopted to uphold static safety, all while ensuring compatibility. These scenario
mappings are realized through the use of C++ Standard Template Library (STL) types. For instance, consider the definition
of the scenario table type for the kernel, structured as a std::map that maps from the control token type TC to a std::tuple
comprising fixed-size std::array, outlined as follows.

1https://github.com/forsyde/ForSyDe-SystemC
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t y p e d e f s t d : : map<TC , s t d : : t u p l e <
s t d : : a r r a y < s i z e t , s i z e o f . . . ( TIs ) > ,
s t d : : a r r a y < s i z e t , s i z e o f . . . ( TOs)>

>> s c e n a r i o t a b l e t y p e ;

• Traversing variadic template types can prove challenging in classic C++, often necessitating compile-time recursion through
template meta-programming. However, with the advent of modern extensions in C++17, notably std::apply and fold
expressions [19], it becomes feasible to apply a function to the elements of a tuple in a type-safe manner during compile
time. To illustrate this concept, consider the following code snippet, which showcases the potential implementation of the
Prod stage within the constructors. In this context, oport represents a std::tuple consisting of n output ports, while
ovals signifies a std::tuple comprising n output buffers intended for writing.

s t d : : a p p l y ( [ & ] ( auto &&. . . p o r t ) {
s t d : : a p p l y ( [ & ] ( auto &&. . . v a l ) {

( w r i t e v e c m u l t i p o r t ( p o r t , v a l ) , . . . ) ;
} , o v a l s ) ;

} , o p o r t ) ;

As an illustration of the library’s practical application, we can model the decoding kernel process “D” for the system depicted
in Fig. 1 as demonstrated below. Notably, automatic type deduction is employed, alleviating the need for explicit specification
of template types, which streamlines the modeling process. In addition, structured binding feature of C++17 allows a more
expressive assignment of inputs and outputs.

auto d f u n c = [ ] ( auto&& out , c o n s t auto& sc , c o n s t auto& i n p ) {
c o n s t auto& [ inpEp , inpEm , inpEc ] = i n p ;
auto&& [ outR ] = o u t ;

sw i t ch ( s c ) {
case Sp :

outR [ 0 ] = inpEp [ 0 ] − 1 ;
break ;

case Sm:
outR [ 0 ] = inpEm [ 0 ] + 1 ;
break ;

case Sc :
outR [ 0 ] = ( inpEc [ 0 ] + inpEc [ 1 ] ) / 2 ;
outR [ 1 ] = ( inpEc [ 0 ] − inpEc [ 1 ] ) / 2 ;
break ;

}

} ;

SADF : : make kernelMN (
” d ” ,
d func ,
{

{ Sp , { { 1 , 0 , 0 } , { 1 } } } ,
{Sm , { { 0 , 1 , 0 } , { 1 } } } ,
{ Sc , { { 0 , 0 , 2 } , { 2 } } }

} , / / d t a b l e
t i e ( d t o r ) ,
k tod ,
t i e ( ep tod , emtod , e c t o d )

) ;

3.4. Extending Introspection for Dynamic Models
ForSyDe-SystemC models are endowed with the capability of self-reflection, a feature known as introspection. Introspection

comes into play during the elaboration phase of SystemC, where it extracts the static structure of the models. This extraction
manifests as a hierarchical graph comprising processes, each uniquely identified by its process constructors and the arguments
supplied during instantiation. This intermediate representation has the capacity to be exported in an XML format, which proves
invaluable for integrating ForSyDe-SystemC into various stages of a design flow, including but not limited to synthesis and
verification processes.

The implementation of the SADF MoC is structured to facilitate the utilization of introspection, enabling the export of specified
models for analysis by external tools. In particular, the output XML representation can be seamlessly converted into the XML
format compatible with the SDF3 tool [17]. This tool is proficient in conducting various analyses, including but not limited to
deadlock freedom checks, throughput calculations, model transformations, visualization, and more. Fig. 5 serves as an exemplar,
showcasing the introspection output of the system depicted in Fig. 1, effectively converted for visualization purposes using the
f2dot tool.

In addition to the static introspection capabilities, a complementary dynamic introspection mechanism has been meticulously
developed and harnessed by the SADF MoC. This dynamic feature empowers each of the kernel and detector processes to report
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Fig. 5: Visualization of the introspection output for the tutorial example.

their present scenario of operation. This valuable information can be amalgamated with the overarching model structure, providing
insights into the SADF graph’s composition and the model’s status at any given moment. To mitigate undue computational
overhead, all aspects related to dynamic introspection, including definitions and activities, can be selectively excluded from the
model’s implementation through the utilization of a compile-time macro definition. This allows for the efficient management of
introspection features based on the specific requirements of the model.

4. Experimental Results

In order to substantiate the assertions made in the paper, a series of experiments have been devised. First and foremost, to
demonstrate the framework’s precise functionality, we construct a model of the simple-profile MPEG-4 decoder (MPEG-4 SP), as
initially introduced in the early SADF paper [22] and also used in similar works [7], employing the modeling framework presented
in this paper. Furthermore, we undertake an assessment of the framework’s performance and scalability by employing synthetic
models generated by SDF3. These synthetic models serve as valuable benchmarks for evaluating the framework’s efficiency and
its ability to handle increasingly complex and resource-intensive scenarios.

4.1. The MPEG-4 Decoder

A video decoder designed to support MPEG-4 SP is specifically tailored to handle video streams exclusively comprising
intra-coded (I) and predicted (P) frames. These frames are constructed from multiple macro blocks, each necessitating various
operations, including Variable Length Decoding (VLD), Inverse Discrete Cosine Transformation (IDCT), Motion Compensation
(MC), and the Reconstruction (RC) of the resulting image.

The crucial observation regarding MPEG-4 decoding lies in the significant variation in computational demand and resource
requirements when decoding different frame types. For instance, during the decoding of I-frames or P-frames for still video, certain
functions such as VLD and MC may be entirely omitted. Prior works [22] have demonstrated that designing such an application
using conventional MoCs like SDF necessitates a conservative allocation of CPU time and memory buffers for the worst-case
scenario, resulting in an inefficient implementation. An alternative design approach, discussed below, involves partitioning the
behaviors into a finite set of scenarios and analyzing the application’s behavior, performance, and cost metrics in each scenario.

We have created a ForSyDe-SystemC model representing an MPEG-4 simple profile decoder. The introspection output of
this model is depicted in Fig. 6a, comprising four kernel processes, each corresponding to one of the aforementioned operations,
alongside the frame detector (FD). This introspection output has been slightly adjusted to include details regarding the input and
output rates of both the kernels and detectors, offering a more comprehensive view of the model’s behavior and characteristics.

When decoding an I frame, all macro blocks need to undergo VLD and IDCT processes, while the resulting image is
straightforwardly reconstructed through RC. Assuming an image size of m × n pixels, there are a total of mbI =

m×n
k2 macro blocks

of size k × k to be decoded for I frames. For example, for QCIF images, m = 176, n = 144, k = 16, and the macro block set size
for I frames is mbI = 99. However, I frames do not require any motion vectors. Motion vectors are only relevant for MC when
processing P frames, which involves determining the new position of macro blocks based on the previous frame. In such cases, the
resulting image is adjusted using the pixel data obtained from the newly decoded macro blocks. The number of motion vectors and
macro blocks to decode can vary for different P frames, ranging from zero to mbI . When there are no motion vectors (zero motion
vectors), it indicates the decoding of still video, where VLD and IDCT processes are not required, and MC simply copies the
previously decoded frame.

As stated earlier, such an application exhibits a high level of dynamism and resource requirements in different scenarios and
thus, an SADF model can capture this diversity more precisely. Assuming a separate scenario for decoding I frames, and P frames
with a limited set of |mbI | values, Fig. 6b provides the token rates of kernels for each scenario type. For the purpose of throughput
analysis, the designer must also estimate the execution times of the actors in each scenario. However, since this information is not
directly relevant for functional modeling purposes, we recommend referring to the literature [22], for instance, for example data.
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Fig. 6: Model of the MPEG-4 simple profile decoder [22]. (a) Annotated introspection output of the ForSyDe-SystemC model. (b)
The scenario table.

The FD detector receives the frame type signal and a synchronization signal consisting of Booleans, and configures all kernels
with one of the predefined scenarios, as outlined in Table 6b. The VLD kernel decodes the input streaming of macro blocks and
sends the decoded macro blocks to the IDCT kernel. In the case of decoding P-frames, the VLD kernel also sends the motion
vectors to the MC kernel. During the decoding of I-frames, motion compensation is unnecessary. As a result, the MC kernel
does not utilize motion vectors and generates a blank image consisting of a frame filled with zeros. In the case of P-frames, the
MC kernel consumes the previously decoded frame along with a specific number of motion vectors corresponding to the type of
P-frame being decoded. The output is a frame constructed by shifting the blocks of the previous frame according to the motion
vectors. Finally, the RC kernel combines the motion-compensated frame with the macro blocks produced by the IDCT kernel.
This process yields a decoded frame containing m × n pixels.

Table 1 provides a comparison of different approaches for functional modeling of MPEG-4 using the SADF MoC. Specifically,
the SADF models of ForSyDe-SystemC, as contributed in this work, are compared to the approaches presented by Bonna et al. [7].
ForSyDe-SADF integrates SADF models into the Haskell-based implementation of ForSyDe, offering a concise and abstract
syntax for modeling. However, its shallow embedded implementation in the host language makes it suitable only for simulation
and does not provide an easy path for using the model for analysis and synthesis. Additionally, its unfamiliar syntax and semantics
for typical designers make its adoption in industrial setups challenging.

The approaches named Imperative High-Level Languages (IHLL) provide templates to implement the kernels and detectors as
concurrent tasks communicating using FIFO-like buffers in Python and SystemC. As stated in earlier sections, these approaches are
more suitable for code generation and cannot be considered as comprehensive system-level modeling frameworks for embedded
and CPS design. However, the ForSyDe-SystemC-based approach for SADF modeling allows us to model the MPEG-4 decoder
using ForSyDe abstractions while being based on the familiar and efficient SystemC/C++ language. In addition, the MPEG-4
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Table 1: Comparing the proposed framework for SADF modeling to similar approaches. Performance is reported in terms of
decoded frames per second for 64 × 64 frames with macroblocks of size 8 × 8.

Modeling Framework ForSyDe-SADF IHIL Python IHIL SystemC ForSyDe-SystemC

Formal Modeling Abstractions Y N N Y
Industry-Friendly N Y Y Y
Model Analysis & Synthesis N N N Y(via introspection)
Performance (FPS) 12.35 3.37 51.32 2797
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Fig. 7: The developed tool flow used for synthetic benchmarks. The shaded boxes are developed in the context of this work.

ForSyDe-SystemC models are exported as an intermediate representation, providing a path for the integration of analysis and
synthesis tools.

The performance of all approaches for decoding 200 64 × 64 frames with macroblocks of size 8 × 8 is compared and reported
in terms of decoded frames per second. The numbers for the first three cases are extracted from [7], and our model is executed on
a quad-core Core-i7 Linux laptop. As evident, the MPEG-4 example in our case has significantly better performance compared to
other approaches. Unfortunately, as the code for the IHLL SystemC is not published, it is not possible to make a thorough analysis
of the root of such a performance gap. The possible causes are inefficient implementation and optimization of IHLL SystemC. The
complete model is added to the ForSyDe-SystemC repository for interested authors for inspection.

4.2. Synthetic Benchmarks
The size and complexity of an SADF model can be influenced by various parameters. To assess the performance of our

framework across a spectrum of valid SADF graphs with differing characteristics, we have devised a tool pipeline designed to
generate synthetic models with adjustable parameters. The depicted tool flow, as illustrated in Fig. 7, has been implemented and
is accessible in a dedicated code repository2. This tool pipeline serves as a valuable resource for systematically exploring the
behavior and scalability of our framework under diverse conditions and model configurations.

The user input for generating synthetic SADF graphs involves specifying a list of parameters, including:

1. The number of kernel actors.
2. The average number of input and output channels (degree) for each actor.
3. The average execution time for each actor.
4. The number of graph scenarios.
5. The average size of tokens communicated through the channels.

The SDF3 graph generator tool leverages an algorithm to produce valid, deadlock-free, FSM-based SADF. A slight modification
has been made to the analysis tool of SDF3, enabling the generation of schedules for each scenario in the form of repetition vectors.

To transform the generated graph into a ForSyDe model in XML format, a conversion tool has been developed. This format is
an implementation of the ForSyDe intermediate representation [3]. This tool incorporates the addition of a detector and extraction
of scenario tables, among other tasks. Subsequently, the ForSyDe-SystemC code generator takes the converted ForSyDe-XML and
produces a simulation model in SystemC/C++. This step involves generating placeholder code for kernel functions, approximating
the intended execution times using a busy loop.

Both the converter and the code generator are implemented in Python, and a top-level script orchestrates the execution of
these steps in sequence. Ultimately, the compiled simulation models are executed, and the measured execution times are reported,
facilitating the evaluation and analysis of the framework’s performance under varying synthetic model conditions.

Fig. 8 provides a comprehensive overview of simulation performance, with each graph parameter undergoing variation for
analysis. In cases where a parameter is not subjected to change, the default values for graph generation are as follows: 20 for the

2https://github.com/SBU-CPS-Lab/forsyde-systemc-sadf-experiments
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Fig. 8: The simulation time for 100 graph iterations with respect to (a) number of actors in the graph; (b) average degree of the
graph; (c) average execution time of the actors; (d) number of scenarios; and (e) communicated token sizes. Dashed lines represent
linear interpolation of the values.

number of actors, an average degree of connectivity in the graph set to 2, an average intended execution time of actors at 20ms, 2
scenarios, and token sizes of 2 words for communication within the channels. The experiments have been conducted on a system
equipped with a 7th-generation Core i7 Intel processor boasting 16GB of RAM and running a Linux operating system. The models
are compiled utilizing g++ 11.4 with optimization set to level 2. All of the raw input data and intermediate models are available in
the repository for further investigation by the interested reader.

Observing the results, it is evident that simulation time exhibits a linear increase as the number of actors (Fig. 8a), the degree
of graph connectivity (Fig. 8b), and the intended average execution time of actors (Fig. 8c) increase. Conversely, simulation times
remain relatively stable even with variations in the number of scenarios (Fig. 8d) and token sizes (Fig. 8e). These results effectively
demonstrate the scalability of our modeling framework across the analyzed application scales, considering the chosen granularity
of average actor execution times.

5. Conclusion

Effective modeling abstractions and tools play a pivotal role in assisting designers in managing the intricacies inherent in
dynamic and intelligent embedded and cyber-physical systems (CPSs). In this context, we have introduced a modeling framework
founded upon the scenario-aware dataflow (SADF) model of computation (MoC). This framework adeptly captures the inherent
dynamism within CPSs through a controlled representation of scenarios.

In our contribution, we have provided a rigorous denotational-style semantics for modeling within the context of the Formal
System Design (ForSyDe) framework. Additionally, we have presented an operational-style semantics tailored for practical
implementation within industrial languages. The incorporation of the SADF MoC into the ForSyDe-SystemC modeling framework
is achieved through the utilization of contemporary features of the C++ language. This integration inherits several advantageous
properties of the framework, including type- and size-safety, model introspection, parallel simulation capabilities, and seamless
foreign model integration.
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To illustrate the effectiveness and versatility of the framework, we have presented demonstrational examples encompassing an
encoder/decoder system and the simple profile of the MPEG-4 algorithm, serving as case studies. These exemplars showcase
the correctness and practicality of the framework in real-world scenarios. Furthermore, we have established a tool flow for the
automatic generation of synthetic benchmarks. These benchmarks are instrumental in scrutinizing and substantiating the scalability
of ForSyDe-SystemC SADF models, providing valuable insights into their performance under diverse conditions.
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Appendix A. Acronyms

CPS cyber-physical system
CT continuous-time
DDE distributed discrete-event
DE discrete-event
ESL electronic system-level
ForSyDe Formal System Design
FSM finite-state machine
KPN Kahn process network
MI MoC interface
MoC model of computation
SADF scenario-aware dataflow
SDF synchronous dataflow
SoC system on chip
SY synchronous
UT untimed
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