
June 2024, Volume 1, Issue 2

76

FARW: A Feature-Aware Random Walk for node classification

Sajad Bastamia, ORCID: 0009-0008-1229-2887

Alireza Abdollahpouric, ORCID: 0000-0003-3281-5944

 Rojiar Pir mohammadiani1 b, ORCID: 0000-0003-2998-1562

a Faculty of Computer Engineering, University of Kurdistan, Sanandej, Iran, email: sajad.bastami@uok.ac.ir

b Faculty of Computer Engineering, University of Kurdistan, Sanandej, Iran, email: r.pirmohamadiani@uok.ac.ir

c Faculty of Computer Engineering, University of Kurdistan, Sanandej, Iran, email: Abdollahpouri@uok.ac.ir

ABSTRACT

Graph-structured data, common in real-world applications, captures entities (nodes) and their relationships (edges). While traditional

methods integrate node content and neighborhood information to represent nodes in a latent space, random walks—despite being

grounded in graph topology—suffer from limitations such as bias towards high-degree nodes, slow convergence, and difficulty in

handling disconnected components. To address these issues, we introduce the "Feature-Based Random Walk on Graphs" (FARW),

an advanced method that prioritizes node similarity in random walks. Unlike traditional approaches, FARW determines movement

based on node features, enabling a more comprehensive analysis of complex networks. This feature-based approach improves the

representation of heterogeneous graphs and enhances performance on a variety of tasks. Moreover, FARW demonstrates greater

robustness when the graph structure changes. Experiments on three datasets—Cora, PubMed, and CiteSeer—show that FARW

outperforms traditional structure-based random walks and the Node2Vec method, achieving accuracies of 87%, 83%, and 65%,

respectively. These results suggest that incorporating node features during random walks improves the efficiency and accuracy of

network analysis across diverse applications.

KEYWORDS: Random Walk, Node Features, Complex Networks, Social Network Analysis.

1. INTRODUCTION

In the last two decades, we have witnessed a significant increase in the availability of valuable big data, often structured in the

form of graphs or networks. To apply traditional machine learning and data analysis techniques to such data, it is essential to

transform graphs into vector-based representations that retain the most important structural properties of the graphs [1]. Graph

embedding is a technique that facilitates the analysis of graph data by automatically generating continuous vector representations for

simple graphs, knowledge graphs, and biological data. There are various methods for embedding graphs, which either rely on

topological information, node features, or both. For example, methods like DeepWalk [2] and Node2Vec [3] utilize only topological

information, whereas approaches such as GCN [4], GraphSAGE [5], and VGAE [6] also incorporate node features. In today’s world,

complex networks are considered essential tools for studying the structure and behavior of complex systems. These networks are

applied across a wide range of fields, including physics, biology, social sciences, and more. A fundamental concept in complex

networks is the notion of a node. Nodes are connection points within the network that can represent individuals, organizations,

servers, and more. Node features, such as degree, centrality, and correlation, provide crucial insights into the structure and

functionality of the network [7]. One of the key models for studying complex networks is the random walk model, which offers

valuable information about the network's structure and its intricate behaviors [8].

Graph embedding is a powerful technique for analyzing the structure and features of complex networks. This method enables us

to represent a network in a vector space, providing a clearer understanding of its structure and features [9]. One of the key techniques

Submit Date: 2024-10-27

Revise Date: 2025-01-04

Accept Date: 2025-01-15
1 Corresponding author

mailto:sajad.bastami@uok.ac.ir
mailto:r.pirmohamadiani@uok.ac.ir
mailto:%20Abdollahpouri@uok.ac.ir

FARW: A Feature-Aware Random Walk for node classification

77

for examining the structure and behavior of graphs is the random walk model. In this model, a "walker" moves randomly through

the graph, and by considering the graph's features, the similarity between nodes can be assessed. There are various methods for

evaluating the similarity between nodes. One common approach is cosine similarity, which measures the angle between two vectors.

This method is particularly useful when the features are represented as vectors. Other distance metrics, such as Manhattan distance

and Mahalanobis distance, are also commonly used to calculate node similarity. Manhattan distance is the absolute sum of the

differences between the components of two vectors, while Mahalanobis distance is a metric for multi-dimensional data. Additionally,

the Dirichlet function provides another method for assessing node similarity. This approach is based on the joint probability

distribution of the data and is particularly effective when the data represent probabilistic distributions [10].

Graph embedding algorithms typically learn numerical representations of nodes by preserving graph-based distances in a given

Euclidean space. Traditional classification algorithms are then applied to the table composed of feature vectors for all labeled nodes

to build a classification model capable of inferring the labels of unlabeled nodes.

To improve the effectiveness of this approach, we introduce a similarity function based on random walk attributes and incorporate

it into the node embedding. We leverage the features obtained through this model for both node classification and link prediction

tasks. Experimental results demonstrate that our method outperforms other baseline methods.

Our contributions in this work can be summarized in the following three key points:

• We introduce a feature-based random walk (FARW) that incorporates a node-similarity function, enhancing traditional

random walk methods.

• We propose a novel graph embedding approach, FARW, which leverages feature-based random walks to capture both node

and graph structure information.

• We demonstrate the effectiveness and robustness of FARW through comprehensive experiments on node classification and

link prediction tasks, highlighting its superior performance compared to existing methods.

The paper is organized as follows. Section 2 reviews related works. Section 3 discusses the preliminaries. Section 4 presents the

FARW method, including its implementation and benefits. Finally, in section 5, summarize the experiments and the results obtained.

2. RELATED WORKS

In recent years, several studies have focused on the development of robust models for random walks. This section reviews the

application of similarity functions in graph embedding, including distance metrics, correlation, and cosine similarity. For a more

comprehensive understanding of graph embedding based on random walks, we refer readers to relevant survey papers.

2.1. Random Walks: A Review of Algorithms and Applications.

Random processes, describing paths of successive random steps in mathematical space, are foundational to many areas of

mathematics and computer science. Quantum walks, the quantum analogs of classical random walks, are also gaining attention due

to their potential in quantum computing. Both classical and quantum walks are useful for tasks such as calculating node proximity

and extracting network topology, contributing to advancements in link prediction, recommendation systems, computer vision, semi-

supervised learning, and network embedding [11]. Random walks, as fundamental stochastic processes, model various phenomena,

including diffusion, interactions, and opinion dynamics. They also serve as a tool to extract critical information about entities within

a network. Random walks can be broadly classified into three types: discrete-time, node-centric continuous-time, and edge-centric

continuous-time random walks. The relationship between the normalized graph Laplacian and random walks on graphs has been

further generalized through the development of appropriate normalizations for the Hodge Laplacian. This generalization extends to

simplicial complexes, where random walks on edges are closely tied to the topology of the simplicial complex [12]. Several

algorithms have been developed to leverage the properties of random walks for practical applications:

• PageRank and Personalized PageRank: These algorithms use random walks with restart to rank nodes based on their connectivity

and relevance, widely used in web search and recommendation systems.

• DeepWalk: This algorithm learns latent representations of vertices in a network by generating truncated random walks and

treating them as sentences in a natural language processing framework. DeepWalk is scalable and suitable for large graphs,

leveraging a Skip-Gram Language Model to predict the co-occurrence of nodes within a given context window [2].
Node2Vec: A flexible framework that uses biased random walks to balance exploration (visiting diverse nodes) and exploitation

(reinforcing proximity). Node2Vec generates embeddings that capture both structural equivalence and homophily, making it effective

for tasks like node classification and link prediction [3]. Applications of random walks span multiple domains, including:

• Link Prediction: Identifying potential connections in networks based on node proximity.

• Recommendation Systems: Leveraging network embeddings for personalized recommendations.

• Community Detection: Uncovering groups of densely connected nodes within networks.

• Anomaly Detection: Detecting irregular patterns or deviations in graph structures.

• Semi-Supervised Learning: Using embeddings generated by random walks for learning tasks with limited labeled data.

June 2024, Volume 1, Issue 2

78

2.2. Feature-Aware Graph Embedding

 As a new area of research, the development of Attributed Graph Embedding models has garnered significant attention in recent

years, focusing on graph embedding and node/link classification. However, applying attributed graphs to real-world systems, where

nodes have diverse attributes, presents notable challenges. One such framework, GraphRNA [13], introduces a collaborative walking

mechanism and a deep embedding architecture based on graph recurrent networks (GRNs). AttriWalk approaches node attributes as

a bipartite network, diversifying the walk and reducing the tendency to converge to nodes with high centrality [14]. The core principle

is that nodes that are close or similar in the graph (based on a graph-based similarity or distance function) should also be close in the

embedding space (using a distance metric in the Euclidean space). Table 1 compares various graph-based learning methods across

multiple datasets, highlighting the dataset, method, strategy, metric, and complexity of each approach. The methods reviewed include

Gaussian distribution layers, feature similarity-based information, graph transformation, clean graph transfer, random walks, and

feature awareness. Existing algorithms like Random Walk, DeepWalk, and Node2Vec face challenges related to high computational

costs when applied to large graphs. The personalized feature-based locality vector in FARW enhances its relevance to users. While

DeepWalk and Node2Vec share similar structural approaches, random walks on bipartite graphs tend to converge more quickly but

lack generality. In contrast, transfer learning from clean graphs and graph transformation methods achieve faster convergence on any

graph, with transfer learning providing more accurate proximity calculations.

Table 1. Analytical Comparison of Classical Algorithms.

Table 1 presents an analytical comparison of classical algorithms based on datasets, methods, strategies, evaluation metrics, and

computational complexities. Each row corresponds to a study, starting with the reference ID and the datasets used, such as Cora,

Citeseer, and Pubmed. The methods vary, including Gaussian distribution layers, graph transformations, and random walks, with

strategies like variance-based feature selection and self-supervised learning. Metrics primarily focus on accuracy, while complexities

differ, from 𝑂(𝛼|𝑉| + 𝛽|𝐸|) to 𝑂(|𝐸|𝑑) , reflecting the computational requirements. The table also highlights missing complexity

details in certain cases, marked as "-".

3. PRELIMINARIES

In this section, we introduce the notation used throughout the paper, review the concept of base features, and provide a brief

overview of Random Walk.

3.1. Notations

In Random Walk, countermeasure strategies are techniques used to protect feature awareness and maintain performance when

subjected to graph embedding. Assume that the task of node classification can be approached as a downstream application of node

embedding, where the graph G=(V,E,X) is defined as follows: 𝑉 s the set of nodes, which can be represented pictorially as the vertices

Ref Dataset Method Strategy Metric Complexity

[15]
Cora, Citeseer,

Pubmed

Gaussian

distribution layer
Variance-based feature Accuracy 𝑂(𝛼|𝑉| + 𝛽|𝐸|)

[16]
Cora, Citeseer,

Pubmed

Information local

based on feature

similarity

Self-Supervised Learning Accuracy 𝑂(𝑛1.14)

[17]

Cora, Citeseer,

Pubmed,

OGB-Arxiv

Graph

Transformation
Test-time Training

Average

classification

performance

-

[18]
Pubmed, Yelp,

Reddit

Transfer from clean

graph
eigendecomposition Accuracy -

[19]

Cora, Citeseer,

ogbn-arxiv,

DP

Random Walk Geometry similarity Estimation accuracy O(DE)

FARW
Cora, Citeseer,

Pubmed
Aware feature statistics similarity Estimation accuracy 𝑂(|𝐸|𝑑)

FARW: A Feature-Aware Random Walk for node classification

79

of the graph, 𝐸(𝐸 ⊆ 𝑉 × 𝑉) is the set of edges connecting the nodes, X = {x1, … , xn} is the feature matrix of the nodes, where each

xi ∈ RM represents the features of node iii in an MMM-dimensional space. The adjacency matrix A∈{0,1}N×N is used to indicate

whether a pair of nodes 𝑣𝑖 and 𝑣𝑗 are adjacent, such that 𝑣𝑖𝑗 ∈ 𝐸. Specifically, 𝐴𝑖𝑗 denotes the presence of an edge between nodes 𝑣𝑖

and 𝑣𝑗 . Furthermore, the nodes are assigned unique identifiers in 𝐼𝐷 = {1,2,3 … , |𝑉|}. In a semi-supervised learning setting, the

training data consists of a set of nodes, some of which are labeled and others are unlabeled. Let VL⊆V denote the set of labeled nodes,

where the label of node v is denoted by yv. It is assumed that each node is assigned to one of the classes in C={c1,c2,…,ck}, where 𝑘

represents the total number of classes.

3.2. Feature -Aware Random Walk

Given an input graph G=(V,E) and a predetermined embedding dimension d (where d≪|V|), the problem of graph embedding

involves transforming the graph into a d-dimensional space. In this space, the goal is to preserve the structural properties of the graph

as much as possible. These properties can be measured using proximity metrics, such as first-order [20] and higher-order [21]

neighborhoods, which capture the local and global structure of the graph. Assume a Graph Embedding architecture that includes 𝑘

neighborhoods. At step 𝑘, the Graph Embedding model computes a node representation 𝑍 𝑢
𝑑 for a single node by leveraging the

embeddings of neighboring nodes. In this context, a graph 𝐺 is defined as G=(V,E), where v ∈ V represents a node and e ∈ E represents

an edge. For a more generalized framework, each graph G is associated with a node type mapping function 𝑓𝑣 = 𝑉 → 𝜏𝑣 and an edge

type mapping function 𝑓𝑒 = 𝐸 → 𝜏𝑒 , where 𝜏𝑣 and 𝜏𝑒 define the sets of node types and edge types, respectively. Each node 𝑣𝑖 ∈ 𝑉

belongs to a specific type, i.e., 𝑓𝑣(𝑣𝑖) ∈ 𝜏𝑣 Similarly, for each edge 𝑒𝑖𝑗 ∈ 𝐸 , the edge type is given by 𝑓𝑒(𝑒𝑖𝑗) ∈ 𝜏𝑒. make the Cosine

Similarity comparable across various node features, it is computed across all neighbors of a node using the standard Cosine Similarity

function. The Cosine Similarity between two node representations 𝑥𝑣𝑖
 and 𝑥𝑣𝑗

 can be defined as:

 cos (𝑥𝑣𝑖
, 𝑥𝑣𝑗

) =
∑ 𝑥𝑣𝑖𝑖 𝑥𝑣𝑗

∑ √∑ 𝑥𝑣𝑖
2 𝑖 √∑ 𝑥𝑣𝑗

2 𝑗𝑗∈𝑁𝑖

, (1)

Let cos (𝑥𝑣𝑖
, 𝑥𝑣𝑗

) represent the Cosine Similarity between the feature vectors of two nodes 𝑣𝑖 and 𝑣𝑗 at step 𝑘. X denotes the

feature vectors of the nodes for which similarity with their neighbors is to be computed, and 𝑥𝑣𝑗
 corresponds to the feature vector of

the neighbor of node 𝑣𝑖. Let N denote the number of neighbors of node 𝑣𝑖. The resulting vector of node 𝑣𝑖 (or 𝑣𝑗) obtained from a

graph embedding method is represented as φ(X) = [𝑥1, 𝑥2, . . . , 𝑥𝑐]. The Cosine Similarity is widely utilized as an initial measure to

evaluate the similarity between two node feature vectors, taking into account the nodes' neighborhoods. Specifically, the

representation of node features in a random walk is defined as:

CosSim(𝑥𝑣𝑖
, 𝑥𝑣𝑗

)=𝑤𝑣𝑖𝑣𝑗
.

𝜑(𝑥𝑣𝑖
).𝜑(𝑥𝑣𝑗

)

‖𝜑(𝑥𝑣𝑖
)‖×‖𝜑(𝑥𝑣𝑗

)‖
, (2)

where 𝑤𝑣𝑖𝑣𝑗
 is the weight of the edge connecting nodes 𝑣𝑖 and 𝑣𝑗 in the original graph. 𝜑(𝑥𝑣𝑖

) and 𝜑(𝑥𝑣𝑗
) are the feature vectors

of nodes 𝑣𝑖 and 𝑣𝑗, respectively. ‖𝜑(𝑥𝑣𝑖
)‖ and ‖𝜑(𝑥𝑣𝑗

)‖ are the norms of these feature vectors. For an unweighted graph, the weight

𝑤𝑣𝑖𝑣𝑗
 takes the value of 0 or 1, depending on whether an edge exists between nodes 𝑣𝑖 and 𝑣𝑗.

4. METHODOLOGY

This paper addresses the problem of node classification in graph data. In this section, we introduce the Aware-Feature Random Walk

(FARW) mechanism, a novel approach designed to enhance node classification performance on graphs. Unlike traditional random

walk models that rely solely on graph structure, FARW incorporates both node features and the graph topology. The FARW

mechanism enhances the random walk process by considering not only the graph structure but also the feature information associated

with each node. In the following, we explain how FARW works by analyzing both unbiased and biased random walks initiated from

a node (Figure). We describe how the structural transition matrix S and the attribute proximity matrix A are used to capture inter-

node proximity based on a degree of separation 𝐾𝑥. Figure illustrates how these two matrices are utilized in the FARW approach:

the structural transition matrix (S), Represents the structural transition probabilities between nodes based on the graph topology and

the attribute proximity matrix (A), Measures the proximity between nodes based on their feature similarities. The FARW algorithm

operates iteratively, starting with a randomly selected node from the graph. The algorithm examines the nodes in the immediate

neighborhood of the current node. If a node has no neighboring nodes, it is considered an isolated or "island" node, and the random

walk terminates. Otherwise, the algorithm computes the cosine similarity between the current node’s features and those of its

June 2024, Volume 1, Issue 2

80

neighbors. The cosine similarity function returns a similarity score for each neighboring node. The node with the highest cosine

similarity to the current node is chosen as the next node in the random walk. This process prioritizes paths that traverse nodes with

similar feature representations. The algorithm continues this process, repeating the random walk until either a predetermined

maximum path length 𝑘 is reached or the algorithm concludes based on other criteria. At each iteration, the FARW algorithm updates

the node representation by incorporating both the node’s topological relationships and its feature similarities. This allows the random

walk to adaptively "learn" from both the local graph structure and the features of the nodes. This mechanism enables FARW to

improve node classification performance by providing richer node embeddings for subsequent machine learning tasks.

Figure 1. Diagram of random walk.

Figure 2. Conceptual Pipeline of the Proposed Feature-Aware Random Walk (FARW). The FARW approach introduces a

method to train the original graph 𝐺, mapping all input nodes into a detection-specific feature space. This transformation enables the

use of a Cosine Similarity function to effectively facilitate node classification.

Figure 2 illustrates the workflow of the Feature-Aware Random Walk (FARW) algorithm. The algorithm generates a set of

feature-aware random walks that effectively capture both the graph’s structural properties and node-specific features. These walks

are then utilized for node classification by learning meaningful node representations. The transition from one node to its neighbors

is guided by feature similarity, computed using the cosine similarity function. The FARW framework is composed of three main

components: the Feature-Aware Mechanism, the Encoder, and the Representation Vector. Feature-Aware Mechanism, This

mechanism performs random walks based on the feature similarity of neighboring nodes, leveraging the cosine similarity function

to evaluate the closeness between features. Encoder, The encoder embeds nodes from the random walks into a latent space, preserving

the local neighborhood structure of the original graph while ensuring nodes with dissimilar features are farther apart. Representation

Vector, Finally, the learned representation vectors are employed for the node classification task. The overall process of FARW is

demonstrated in Figure 2, showcasing the interplay of these components. The Feature-Aware Random Walk (FARW) is an

advanced methodology that combines the strengths of graph-based and feature-based techniques, making it an effective tool for node

classification tasks. This approach is structured in several stages, each contributing to the ultimate goal of classifying nodes in a

FARW: A Feature-Aware Random Walk for node classification

81

graph. The process begins with an original graph 𝐺 = (𝑉, 𝐸), where 𝑉 represents the set of vertices (nodes), and 𝐸 represents the set

of edges (relationships or interactions between nodes). For instance, in a social network graph, the vertices could represent

individuals, and the edges could represent friendships or connections.

The Feature-Aware Random Walk (FARW) approach is a systematic method designed to leverage the structural and feature-

based properties of a graph for node classification tasks. The process is divided into multiple stages, each playing a critical role in

achieving accurate and robust node representations. (1) Random Walks, The random walk stage is the cornerstone of the FARW

approach, consisting of two distinct types of walks. Unbiased Random Walk, This is a traditional random walk that navigates the

graph without considering any node or edge features. It provides a foundational perspective by focusing solely on the structural

topology of the graph, serving as a baseline for comparison. Biased Random Walk, In contrast, the biased random walk incorporates

the features and attributes associated with nodes and edges. By influencing the direction and steps of the walk, this approach enables

the algorithm to capture more nuanced information about the graph, including both its structural and feature-based relationships. (2)

Walk Length, The length of a random walk, denoted as ttt, defines the number of steps taken in each traversal. These walks produce

sequences of nodes, expressed as (𝑊𝑣1
, 𝑊𝑣2

, …,𝑊𝑣𝑛
), which represent the path taken through the graph. These sequences form the

foundation for further embedding processes, as they encapsulate the walk's exploration of the graph. (3) Embedding into Vector

Space, The node sequences generated by the random walks are subsequently embedded into a continuous vector space. This is

achieved using the Skip-Gram model, a neural network architecture traditionally employed for learning vector representations of

words. In the context of FARW, the Skip-Gram model is adapted to learn node representations by capturing both structural and

feature-based information. These embeddings are designed to preserve local neighborhood structures while encoding meaningful

relationships between nodes. The resulting vectors provide a rich representation of the graph, making them suitable for downstream

tasks such as node classification.

The model is trained to predict neighboring nodes in a sequence, given a target node. The resulting vector representations

effectively capture both the structural and feature-based properties of the nodes. The output of the Skip-Gram model is a set of vectors

(𝑧1, 𝑧2, …, 𝑧𝑛), where each vector represents a node in the graph. These vectors are embedded in a detection-specific space, optimized

specifically for the task of node classification. To further facilitate classification, cosine similarity is computed between pairs of these

representation vectors. This similarity measure helps classify nodes by leveraging both their contextual relationships and feature-

based similarities. In conclusion, the FARW approach is particularly valuable in scenarios where both the graph structure and the

features of nodes and edges play a crucial role in classification. By integrating these aspects, FARW represents a significant

advancement in node classification methodologies, offering a more accurate and nuanced solution. To learn node embeddings for

the original graph G = (V, E), which consists of two types of nodes distinguished by different colors, we employ random walk

methods. The process begins with generating a set of random walks, 𝑊𝑣𝑖
, for each node (𝑣𝑖∈ V). This set includes both unbiased

random walks and feature-biased random walks. The length of each walk is denoted by t. In the unbiased random walk, the selection

probability of each node is defined as: 𝑃𝑥𝑦 =
𝑎𝑥𝑦

𝐾𝑥
 where 𝑃𝑥𝑦 and 𝑎𝑥𝑦 are elements of the transition matrix P and adjacency matrix A,

respectively and 𝐾𝑥 represents the degree of node x. If an edge exists between nodes 𝑣𝑖 and 𝑣𝑗, then 𝑎𝑥𝑦 = 1; otherwise, 𝑎𝑥𝑦 = 0. In

the biased random walk with features, the selection probability is determined by: 𝑃𝑥𝑦 =
cos(𝑥𝑣𝑖

,𝑥𝑣𝑗
)

∑ cos(𝑥𝑣𝑖
,𝑧𝑣𝑗

)𝑧𝜖𝑁(𝑥)
 where N(x) is the set of

the neighbors of node x, and 𝑃𝑥𝑦 is an element of the transition matrix P.

This approach biases the walk based on the cosine similarity between the features of nodes. After generating node contexts, a

language embedding model is employed as an encoder to map each node to a low-dimensional, continuous vector in the latent space.

In this latent space, the cosine similarity between these vectors, or "node embeddings," approximates the structural and feature-based

similarities in the original graph. The learned vectors can also be visualized in 2D space using dimensionality reduction techniques

such as PCA, providing an intuitive representation of the graph's structure. The resulting node embedding matrix (Φ ∈𝑅|𝑉|×𝐿) contains

feature representations for all nodes, which can be directly and efficiently applied to various downstream tasks, including link

prediction, node classification, and community detection. To normalize the probabilistic representation of nodes within the set 𝑁𝑖,

the softmax function is applied. This comprehensive methodology facilitates a deeper understanding of the complex relationships

within the graph while enabling effective visualization and application to a wide range of graph-related tasks. The formula for

calculating the node embeddings is defined as follows, where j ∈ 𝑁𝑖:

𝜑𝑣𝑖
=𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑗(𝐹𝑅𝑊𝑖𝑗) =

𝑒𝑥𝑝(𝐹𝑅𝑊𝑖𝑗)

∑ 𝑒𝑥𝑝(𝐹𝑅𝑊𝑖𝑟)𝑟∈𝑁𝑖

 , (3)

The model is trained using a function denoted as 𝐹𝑅𝑊𝑖𝑗. This process can be mathematically represented as 𝜑𝑣𝑖
→Z, where

Z∈𝑅𝑑×𝑛 (d≪n) is the final learned embedding matrix. The primary objective is for Z to retain as much information as possible about

June 2024, Volume 1, Issue 2

82

both the node attributes and the graph's topology. This comprehensive preservation of information is critical for improving

performance in downstream tasks such as node classification, link prediction, and community detection. By ensuring that the

embeddings encapsulate these key aspects, the model enhances its utility across various graph-based applications.

Algorithm 1. An algorithm A Feature-Aware Random Walk for node clasiffication.

Algorithm. Feature-Based Random Walk on Graphs

Input:

 G=(V,E,W)

 Window size w

 Walk per vertex v

 Walk length t

 In/Out parameter p,q

Output:

𝜑𝑣𝑖
={𝑧1 , 𝑧2, … , 𝑧𝑖}, Representation Vevtor

Begin

 Initialize 𝑤𝑣𝑖 = 𝐹𝑅𝑊(𝐺, 𝑣𝑖 , 𝑡),k=1,2,…,n;

 for (t = 0; t < N; t += 1) // The number N represents the number of iterations

 Calculate 𝑃𝑥𝑦 with features;

 Calculate cos (𝑥𝑣𝑖
, 𝑥𝑣𝑗

) by Eq. (1)

 Select 𝜑𝑣𝑖
 by Eq. (3) and update the training set 𝑉𝑑;

 end

 By using Eq. (2), Calculate the weight parameter learning;

end

Algorithm 1, referred to as “Feature-Based Random Walk on Graphs,” is a method for node classification that utilizes a feature-

aware random walk approach. The algorithm takes as input a graph G consisting of vertices V, edges E, and weights W . Additionally,

it requires parameters such as window size w, the number of walks per vertex v, walk length t, and in/out parameters p and q. The

output is a representation vector 𝜑𝑣𝑖
={𝑧1 , 𝑧2, … , 𝑧𝑖} for each vertex in the graph. he algorithm begins by initializing 𝑤𝑣𝑖 = 𝐹𝑅𝑊(𝐺, 𝑣𝑖 , 𝑡)

for each vertex. It then proceeds with a loop that runs for N iterations. During each iteration, the cosine similarity cos (𝑥𝑣𝑖
, 𝑥𝑣𝑗

) is

calculated using Equation (1), and 𝑃𝑥𝑦 is computed based on the features. Subsequently, 𝜑𝑣𝑖
 is selected according to Equation (3),

and the training set 𝑉𝑑 is updated. The algorithm also computes the weight parameter learning using Equation (2). This method is

specifically designed to capture both the structural information of the graph and the features of its nodes, making it a powerful tool

for node classification tasks.

4.1. GLOBAL OVERLAP MEASURES

Local overlap metrics have demonstrated significant effectiveness in link prediction, often achieving results comparable to

advanced deep learning methods. However, these metrics are inherently constrained by their reliance on immediate node

neighborhoods. For example, two nodes might exhibit no local overlap but still belong to the same graph community. In contrast,

global overlap statistics aim to capture broader relationships within the graph. A key example of such a statistic is the Katz index,

which calculates the total number of paths of any length connecting a pair of nodes:

𝑆𝑘𝑎𝑡𝑧[𝑣𝑖, 𝑣𝑗] = ∑ 𝛿𝑖𝐶𝑖[𝑣𝑖, 𝑣𝑗],∞
𝑖=1 [4]

FARW: A Feature-Aware Random Walk for node classification

83

where 𝛿𝜖𝑅+ is a user-defined parameter that determines the relative weight assigned to short versus long paths. C small value

of 𝛿 < 1 will reduce the significance of longer paths.

Modified for Random Walk: The Katz index is an example of a transition probability matrix associated with a random walk

on a graph, where the properties of each node influence the transition probabilities. The solution to a basic modified random walk is

presented in the following theorem:

Theorem 1. Let A be a real-valued square matrix and let 𝛿 denote the largest eigenvalue of A. Then, the infinite series

(𝐼 − 𝐴)−1 = ∑ 𝐴𝑖∞
𝑖=0 converges if and only if 𝛿 < 1 and (I-A) is non-singular, ensuring that the walk is ergodic.

Proof. Let 𝑥𝑛 = ∑ 𝐴𝑖𝑛
𝑖=0 then we have A𝑥𝑛=A∑ 𝐴𝑖𝑛

𝑖=0 =∑ 𝐴𝑖𝑛+1
𝑖=1 and 𝑥𝑛-A𝑥𝑛=∑ 𝐴𝑖𝑛

𝑖=0 -∑ 𝐴𝑖𝑛+1
𝑖=1 𝑥𝑛(I-A)=I-𝐴𝑛+1 Therefore,

𝑥𝑛=(I-𝐴𝑛+1) (𝐼 − 𝐴)−1 and if 𝛿 < 1, we have 𝑙𝑖𝑚𝑛→∞ 𝐴𝑛 = 0 so 𝑙𝑖𝑚𝑛→∞𝑥𝑛=𝑙𝑖𝑚𝑛→∞(I − 𝐴𝑛+1) (𝐼 − 𝐴)−1=I(𝐼 − 𝐴)−1=(𝐼 −

𝐴)−1.

Based on Theorem 1, the solution to the Katz index is given by

𝑆𝑘𝑎𝑡𝑧=(𝐼 − 𝛿𝐶)−1-I, [5]

Where 𝑆𝑘𝑎𝑡𝑧𝜖𝑅|𝑉|×|𝑉| is the full matrix of node-node similarity values.

5. EXPERIMENTS

5.1. Experimental Settings

 We utilize base classifiers and compare their performance with various Random Walk methods. Additionally, we provide details

of the hardware specifications and the running time of our experiments. In this section, we illustrate the effectiveness of the Random

Walk approach by comparing it with three state-of-the-art graph embedding methods (GEMs):(a) Random Walk [22]. (b) Node2vec

[3]. (c) Deep Walk [2]. For the hyperparameters of the random walk regularization network, we set the number of walks to 45. The

window size and walk length are configured to either 25 or 20, depending on the dataset. Our results indicate that the best-performing

model utilizes 45 walks with a window size and walk length of either 25 or 20. The initial learning rate for the random walk

regularization is set to 0.001. The experiments were conducted in an environment equipped with an Intel® Core™ i7-10750H CPU

@ 2.60 GHz, 16.0 GB DDR4 memory, and a Windows 11 Home 64-bit operating system (x64 architecture).

5.2. Datasets

To evaluate and compare the efficiency of our method, we conducted experiments using three benchmark datasets (Table 2). (1)

Cora [23]: The Cora dataset comprises 2,708 scientific publications and 5,429 citation links. These publications are classified into

seven categories, making it a widely used benchmark for machine learning tasks. (2) Citeseer [24]: This dataset is a citation network

containing 2,110 academic publications and 3,668 citation links. It is divided into six categories, with each node represented by a

feature vector of 3,703 dimensions. (3) Pubmed [25]: The PubMed dataset consists of 19,717 scientific publications in the biomedical

domain, represented as nodes, with citation relationships as edges. It includes 44,338 citation links and is divided into three categories.

Additionally, the dataset provides TF-IDF (Term Frequency-Inverse Document Frequency) feature vectors for binary classification

tasks.

Table 2. Statistical information about the used dataset.

5.3. Metrics of Feature-Aware Random Walk

Evaluation metrics vary across different downstream tasks, depending on the specific objectives and methodologies. For the

Random Walk topic in graphs, such as node classification, certain metrics are particularly impactful. As noted in [20], accuracy is

one of the most widely used metrics for evaluating the performance of structured graph data and Random Walk methods. Recent

research emphasizes accuracy-based metrics to evaluate predictions from various perspectives. In this study, accuracy is employed

to measure the performance of our Feature-Aware Random Walk model. This metric is calculated based on the true classifications

across all nodes. A higher accuracy value indicates a more effective feature-aware mechanism. In the context of machine learning

and classification models, accuracy is a commonly used metric to assess model performance. Informally, it represents the proportion

of correct predictions made by the model. The formula for calculating accuracy is defined as follows:

Accuracy=(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)/(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) (4)

Dataset nodes edges features classes Cluster coefficient Betweenness Type

Cora 2,485 5,069 1,433 7 0.14147 0.00102 Binary

Citeseer 2,110 3,668 3,703 6 0.2406 0.00165 Binary

Pubmed 19,717 44,338 500 3 0.06018 0.0002 TF-IDF

June 2024, Volume 1, Issue 2

84

5.4. Node classification on graphs

We applied our proposed model to an input graph and observed significant improvements in prediction performance compared

to traditional methods. Table provides a summary of the accuracy of various models—Random Walk, Deep Walk, Node2vec,

GraphSAGE, GAT, and FARW—on three datasets: Cora, Citeseer, and Pubmed. The empirical results in Table 3 demonstrate that

the proposed FARW method significantly outperforms other models, achieving the highest accuracy across all three datasets (0.872

for Cora, 0.745 for Citeseer, and 0.837 for Pubmed). This improvement can be attributed to the incorporation of feature-awareness

into the graph structure, allowing the model to better understand and represent the data. As a result, FARW exhibits enhanced

performance in tasks such as node classification. In contrast, the Random Walk model performs the worst, with accuracy scores of

0.282 for Cora, 0.261 for Citeseer, and 0.287 for Pubmed. Traditional structure-based methods like Deep Walk (0.513 for Cora,

0.318 for Citeseer, 0.507 for Pubmed) and Node2vec (0.306 for Cora, 0.284 for Citeseer, 0.276 for Pubmed) also lag behind FARW.

Modern methods like GraphSAGE and GAT demonstrate improved performance, but they are still outperformed by FARW, which

proves to be the most effective method for this task.

Table 3. Summary of accuracy of different models on three datasets.

model Cora Citeseer Pubmed

Random Walk

[22]
0.282 0.261 0.287

Deep Walk [2] 0.513 0.318 0.507

Nod2vec [3] 0.306 0.284 0.276

GraphSAGE [26] 0.839 0.735 0.863

GAT [27] 0.830 0.725 0.790

FARW 0.872 0.745 0.837

The Deep Walk model shows a significant improvement in accuracy compared to Random Walk, achieving scores of 0.513 for

Cora, 0.318 for Citeseer, and 0.507 for Pubmed. The Node2vec model performs slightly better than Random Walk but falls short of

Deep Walk, with accuracies of 0.306 for Cora, 0.284 for Citeseer, and 0.276 for Pubmed. The FARW model, however, outperforms

all other models by a substantial margin. It achieves the highest accuracy on all three datasets, with scores of 0.872 for Cora, 0.745

for Citeseer, and 0.837 for Pubmed. Table 3 provides a comparative analysis of node classification accuracy for six methods: Random

Walk, Deep Walk, Node2vec, GraphSAGE, GAT, and FARW. The results highlight that FARW consistently achieves the highest

accuracy across all datasets.

Deep Walk and Node2vec exhibit moderate accuracy improvements over Random Walk, with Deep Walk generally performing

better than Node2vec. In contrast, the Random Walk method consistently delivers the lowest accuracy across all datasets. Traditional

methods like Random Walk, Deep Walk, and Node2vec primarily focus on structural properties of graphs, neglecting feature-

awareness, which limits their ability to capture rich node representations. Random Walk suffers from oversimplified random

sampling, while Deep Walk and Node2vec, despite introducing context windows and biased walks, fail to fully leverage node features

for meaningful embeddings. This results in suboptimal performance, particularly in tasks requiring both structural and feature-based

insights. The figure 3 demonstrates that the FARW method consistently achieves the highest accuracy across all datasets.

GraphSAGE follows closely with competitive accuracy levels. DeepWalk and Node2vec display moderate performance, with

DeepWalk slightly outperforming Node2vec across all datasets. Random Walk consistently delivers the lowest accuracy. This trend

reflects the superior performance of FARW in learning accurate representations, while methods like Random Walk and Node2vec

exhibit lower efficacy across all datasets .

FARW: A Feature-Aware Random Walk for node classification

85

Figure 3. Comparison of different variants of the model with our method.

5.5. Analysis of variants in random walk with Features

This module examines the impact of three key variables: the number of walks, walk length, and window size. Number of walks:

Refers to the total number of random walks performed between nodes. Walk length: Indicates the length of each random walk starting

from a node. Window size: Represents the co-occurrence window size used by the SkipGram model when sampling a node's

neighbors. As illustrated in Figure 4, the results for node classification improve significantly when the walk length is set to 25 and

the window size to 20. Additionally, setting the number of walks to 45 produces noticeably better experimental results compared to

other values.

Figure 4. Analysis for walk length, window size, and number of walks.

Analysis for k: In our analysis, we examined the effect of node neighborhood size on feature learning by varying the order of

neighborhood information used, denoted by different values of 𝑘. We set the neighborhood order to {1, 2, 3, 4}, and the experimental

results for the three datasets under different neighbor orders are presented in Table 4. The results indicate that the model's

performance improves steadily as the neighbor order increases from 1 to 2, with the highest classification accuracy observed at 𝑘 =

2. However, when the neighbor order exceeds this optimal value, the model begins to capture more noise and less relevant

information from distant neighbors. This interference can hinder the generation of more discriminative node representations,

ultimately affecting the model's performance.

Table 4. Differences in the accuracy of node classification with different neighbor orders.

k
Cora Citeseer Pubmed

ACC ACC ACC

K=1 0.838 0.713 0.801

K=2 0.872 0.745 0.837

K=3 0.852 0.719 0.819

K=4 0.849 0.706 0.785

Analysis for Embedding Size: In our experiment, we evaluated the impact of different embedding sizes on node classification

performance. We tested embedding sizes of {4, 16, 32, 64, 256}, and the results are presented in Figure 5. The model achieved

June 2024, Volume 1, Issue 2

86

optimal performance on the Cora and Citeseer datasets with an embedding size of 16, while it performed best on the Pubmed dataset

with an embedding size of 32. It is important to highlight that for graph networks with varying levels of feature richness, determining

the optimal embedding dimension requires repeated experimentation. This iterative process ensures the maximum retention of feature

information.

Figure 5. Analysis for embedding size.

6. CONCLUSIONS AND FUTURE WORK

This paper presents a method to improve the performance of graph networks in shallow models. The approach leverages

statistical distributions generated under random walk assumptions, incorporating features of neighboring nodes and cosine similarity

calculations. By identifying similar nodes at various steps and incorporating both cosine similarity and the random walk window

length into the feature vector for node neighborhoods, FARW effectively mitigates the influence of dissimilar nodes. Our method

has the potential for extension to related models, such as Graph Convolutional Networks (GCN) and Graph Isomorphism Networks

(GIN). However, several challenges remain: (1) Decision Boundaries: Defining clear boundaries between nodes remains difficult

due to the stochastic nature of random walks and the variable step lengths, particularly in high-dimensional feature spaces. (2) Large-

Scale Graphs: Current shallow models are often designed for relatively small graphs. Future research should focus on scaling

feature-based random walk models to handle large graphs and exploring their integration with deep learning models. (3) Uncertainty

Estimation: Our findings indicate that uncertainty quantification in semi-supervised learning and graph neural networks is a

promising area for future investigation. Addressing these challenges will further enhance the robustness and applicability of feature-

based random walk methods in graph representation learning.

Author Contributions

The statement of contributions from the authors is included, and all authors have read and approved the final manuscript.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Appendix A. Acronyms

RW Random Walk

FARW Feature-Aware Random Walk

SNA Social Network Analysis

CN Complex Networks

NF Node Features

GE Graph Embedding

RAB Represents Attribute-based

GRNs Graph Recurrent Networks

GCN Graph Convolution Network

FARW: A Feature-Aware Random Walk for node classification

87

References

[1] A. Tomčić, M. Savić, and M. Radovanović, “Hub-aware Random Walk Graph Embedding Methods for Classification,” 2022,

doi: 10.48550/ARXIV.2209.07603.

[2] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online Learning of Social Representations,” 2014, doi:

10.48550/ARXIV.1403.6652.

[3] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for Networks,” 2016, doi: 10.48550/ARXIV.1607.00653.

[4] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional Networks,” 2016, doi:

10.48550/ARXIV.1609.02907.

[5] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation Learning on Large Graphs,” 2017, doi:

10.48550/ARXIV.1706.02216.

[6] T. N. Kipf and M. Welling, “Variational Graph Auto-Encoders,” 2016, doi: 10.48550/ARXIV.1611.07308.

[7] O. Ugurlu, “Comparative analysis of centrality measures for identifying critical nodes in complex networks,” J. Comput. Sci.,

vol. 62, p. 101738, Jul. 2022, doi: 10.1016/j.jocs.2022.101738.

[8] A. Song, Y. Liu, Z. Wu, M. Zhai, and J. Luo, “A local random walk model for complex networks based on discriminative

feature combinations,” Expert Syst. Appl., vol. 118, pp. 329–339, Mar. 2019, doi: 10.1016/j.eswa.2018.10.018.

[9] R. Li, Z. Liu, Y. Zeng, and J. Ma, “Representing the Topology of Complex Networks Based on Graph Embedding,” in 2022

International Conference on Networking and Network Applications (NaNA), Urumqi, China: IEEE, Dec. 2022, pp. 1–7. doi:

10.1109/NaNA56854.2022.00062.

[10] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and performance: A survey,” Knowl.-Based Syst., vol.

151, pp. 78–94, Jul. 2018, doi: 10.1016/j.knosys.2018.03.022.

[11] N. Arsov and G. Mirceva, “Network Embedding: An Overview,” 2019, doi: 10.48550/ARXIV.1911.11726.

[12] M. T. Schaub, A. R. Benson, P. Horn, G. Lippner, and A. Jadbabaie, “Random Walks on Simplicial Complexes and the

normalized Hodge 1-Laplacian,” 2018, doi: 10.48550/ARXIV.1807.05044.

[13] X. Huang, Q. Song, Y. Li, and X. Hu, “Graph Recurrent Networks With Attributed Random Walks,” in Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage AK USA: ACM, Jul.

2019, pp. 732–740. doi: 10.1145/3292500.3330941.

[14] I.-C. Hsieh and C.-T. Li, “CoANE: Modeling Context Co-occurrence for Attributed Network Embedding,” IEEE Trans.

Knowl. Data Eng., pp. 1–1, 2022, doi: 10.1109/TKDE.2021.3079498.

[15] C. Wang, S. Pan, C. P. Yu, R. Hu, G. Long, and C. Zhang, “Deep neighbor-aware embedding for node clustering in attributed

graphs,” Pattern Recognit., vol. 122, p. 108230, Feb. 2022, doi: 10.1016/j.patcog.2021.108230.

[16] X. Peng, Z. Xing, X. Tan, Y. Yu, and W. Zhao, “Improving feature location using structural similarity and iterative graph

mapping,” J. Syst. Softw., vol. 86, no. 3, pp. 664–676, Mar. 2013, doi: 10.1016/j.jss.2012.10.270.

[17] W. Jin, T. Zhao, J. Ding, Y. Liu, J. Tang, and N. Shah, “Empowering Graph Representation Learning with Test-Time Graph

Transformation,” 2022, doi: 10.48550/ARXIV.2210.03561.

[18] C. Godsil, “State transfer on graphs,” Discrete Math., vol. 312, no. 1, pp. 129–147, Jan. 2012, doi:

10.1016/j.disc.2011.06.032.

[19] L. F. R. Ribeiro, P. H. P. Saverese, and D. R. Figueiredo, “struc2vec: Learning Node Representations from Structural

Identity,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

Halifax NS Canada: ACM, Aug. 2017, pp. 385–394. doi: 10.1145/3097983.3098061.

[20] J. Dreier, I. Eleftheriadis, N. Mählmann, R. McCarty, M. Pilipczuk, and S. Toruńczyk, “First-Order Model Checking on

Monadically Stable Graph Classes,” 2023, doi: 10.48550/ARXIV.2311.18740.

[21] M. Kaul and M. Imaizumi, “Understanding Higher-order Structures in Evolving Graphs: A Simplicial Complex based Kernel

Estimation Approach,” 2021, doi: 10.48550/ARXIV.2102.03609.

[22] F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong, “Random Walks: A Review of Algorithms and Applications,” 2020, doi:

10.48550/ARXIV.2008.03639.

[23] G. Mali and S. Misra, “CORA: Cooperative Communication and Optimal Resource Allocation in Multihop Wireless

Multimedia Sensor Networks,” IEEE Internet Things J., vol. 11, no. 3, pp. 4076–4084, Feb. 2024, doi:

10.1109/JIOT.2023.3300774.

[24] K. D. Bollacker, S. Lawrence, and C. L. Giles, “CiteSeer: an autonous Web agent for automatic retrieval and identification of

interesting publications,” in Proceedings of the second international conference on Autonomous agents - AGENTS ’98,

Minneapolis, Minnesota, United States: ACM Press, 1998, pp. 116–123. doi: 10.1145/280765.280786.

[25] F. Dernoncourt and J. Y. Lee, “PubMed 200k RCT: a Dataset for Sequential Sentence Classification in Medical Abstracts,”

2017, doi: 10.48550/ARXIV.1710.06071.

[26] P. Hajibabaee, M. Malekzadeh, M. Heidari, S. Zad, O. Uzuner, and J. H. Jones, “An Empirical Study of the GraphSAGE and

Word2vec Algorithms for Graph Multiclass Classification,” in 2021 IEEE 12th Annual Information Technology, Electronics

and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada: IEEE, Oct. 2021, pp. 0515–0522. doi:

10.1109/IEMCON53756.2021.9623238.

[27] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph Attention Networks,” 2017, arXiv. doi:

10.48550/ARXIV.1710.10903.

June 2024, Volume 1, Issue 2

88

Sajad Bastami

Bachelor's in Computer Engineering, Software Major: Imam Hossein University (2008-2011)

Master's in Computer Engineering, Software Major: lorestan university (2019-2022)

Ph.D. in Artificial Intelligence: University of Kurdistan. His main research interests are in the field of Graph

Machine Learning and complex networks analysis.

Alireza Abdollahpouri is an associate professor at the Department of Computer Engineering, University of

Kurdistan, Iran. He has obtained Ph.D. (Computer Networks) in 2012 from University of Hamburg, Germany.

He received the B.Sc. and M.Sc. degrees both in Computer Engineering from Isfahan University of Technology

and Amirkabir University of Technology, respectively. His main research interests are in the field of Graph

Machine Learning and complex networks analysis.

Rojiar Pir Mohammadiani is an assistant professor at the Department of Computer Engineering, University

of Kurdistan, Iran. She has obtained Ph.D. (Information Technology) in 2017S from K. N. Toosi University of

Technology, Iran. She received the B.Sc. and M.Sc. degrees both in Information Technology from Tabriz

University. Her main research interests are in the field of Graph Machine Learning and complex networks

analysis.

https://en.kntu.ac.ir/
https://en.kntu.ac.ir/

