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ABSTRACT 

3D object detection for self-driving cars has emerged as a critical challenge, largely due to the constraints of computing resources 

and the requirement for real-time processing. For evaluation, we utilize the KITTI benchmark dataset, which is widely used for self-

driving cars and 3D object detection research.  In this paper, an adaptive Weighted knowledge distillation approach is proposed to 

enhance detection accuracy while improving computational efficiency. Based on the performance of the teacher model, point clouds 

are divided into  TPS (Teacher Performs Strongly) and TPW (Teacher Performs Weakly). The student model adapts its learning 

strategy dynamically: for TPS point clouds, it closely imitates the teacher by increasing the distillation weight, whereas for TPW 

point clouds, it prioritizes learning from raw data, reducing reliance on the teacher’s guidance. Additionally, a data pruning 

mechanism creates a smaller dataset from the KITTI benchmark  based on the teacher model’s performance, while maintaining the 

TPS-TPW ratio. Experimental results indicate that the student model achieves comparable, and in some cases superior, performance 

to the teacher model. Specifically, it enhances recall by up to 1.5% and precision by up to 2.2% in complex scenarios. The student 

model is a lightweight network that learns from the teacher through knowledge distillation [28] and is solely used during execution. 

This design reduces execution time by nearly 50% while maintaining high detection accuracy  .These findings emphasize the 

effectiveness of the proposed framework in real-time 3D object detection, making it well-suited for deployment in resource-

constrained environments such as self-driving cars. 
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1. INTRODUCTION 

Comprehending the 3D environment is crucial for robotic perception. A point cloud, which is created by 3D sensors like LiDAR, is 

a common way to capture the shape of the environment. A point cloud provides accurate spatial information, making it invaluable 

for tasks including navigation, mapping, and autonomous systems. Convolutional neural networks (CNNs) are efficient for 

processing grid-like data, such as images. However, they require data to be arranged on a regular grid, which can lead to potential 

information loss or wasted computations in irregular structures, such as point clouds. In contrast, graph neural networks (GNNs) 

treat individual points as graph nodes and connect neighboring points to capture spatial relationships, effectively handling the sparse 

structure of point clouds. This allows GNNs to extract features efficiently and improve 3D object detection accuracy, particularly in 

applications like autonomous driving, where real-time performance is essential. 

Recent developments in 3D object detection have addressed the specific challenges associated with point cloud data. Early methods 

like PointNet [4] and PointNet++ [5], introduced efficient frameworks to process raw point cloud data and learn both local and global 

features. Later advancements, including PointRCNN [6], VoteNet [7], and 3DSSD [8], detection by focusing on region-based 

refinement, voting mechanisms, and eliminating voxelization to optimize performance.  Despite these improvements, challenges 

such as occlusion and sparse data remain significant. Techniques like AGO-Net [11]and ODSPC [12]combine real-world and 

augmented features or integrate semantic information to enhance detection under occlusion. Additionally, graph neural networks 
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(GNNs), such as Point-GNN  [17] and dynamic graph CNNs [20], have shown promise in processing the irregular structure of point 

clouds. Knowledge distillation has further advanced field by transferring knowledge from large teacher models to lightweight student 

models, as demonstrated in methods like itKD [23] and CaKDP [25]. 

Misclassification or failure to detect objects in self-driving cars can have serious consequences, highlighting the importance of 

efficient and accurate 3D object detection.  A major challenge lies in managing the large volumes of sensor data while maintaining 

high accuracy, particularly in dynamic and diverse environments. Autonomous vehicles must process this data quickly to ensure safe 

and reliable operation. Without optimized computational and memory resource management, these systems risk delays and reduced 

detection performance, posing risks to real-time functionality. To address the challenges of high computational costs substantial 

memory consumption in 3D object detection, knowledge distillation [28] as an effective solution. In knowledge distillation [28], a 

large teacher model is used to extract essential features and make accurate predictions. By transferring this knowledge to a lightweight 

student model, the student is able to achieve comparable performance while requiring fewer computational resources. This makes 

the student model highly suitable for real-time applications and deployment in environments with limited computational capacity . 

In this paper, we propose an adaptive weighted knowledge distillation approach combined with a data pruning mechanism to address 

tackle the challenges of high computational demands and enhance execution time. Our method evaluates the teacher model's 

performance on each point cloud, divided data into TPS (Teacher Performs Strongly) and TPW (Teacher Performs Weakly). For 

TPS point clouds, the student model relies heavily on the teacher’s knowledge to quickly learn key patterns and information, while 

for TPW point clouds, the student focuses on learning directly from the ground truth and its own loss function, fostering independent 

refinement of predictions. The teacher’s guidance is still partially retained for TPW cases, ensuring the student can still benefit from 

partial guidance. This combination of teacher-driven learning for TPS and student-driven learning for TPW enables the model to 

develop a more comprehensive understanding. As a result, it achieves robust and generalized performance.  It is worth mentioning 

that our approach involves a teacher model and a student model during training, where the student adaptively learning through 

knowledge distillation. The teacher provides guidance to the student during the offline training phase, but only the lightweight student 

model is used during execution. This design minimizes computational costs while maintaining performance close to the teacher, 

making it an efficient and practical solution for deployment.  This paper introduces innovative adaptive weighted knowledge 

distillation and data pruning mechanisms, along with a lightweight student model, designed to enhance computational efficiency and 

improve real-time 3D object detection performance. 

The rest of this paper is organized as follows: In Section 2, we review related work, focusing on recent progress in 3D object detection, 

graph neural networks, and knowledge distillation approaches. Section 3 introduces our proposed adaptive weighted knowledge 

distillation approach, including its integration with a data pruning mechanism and an adaptive training strategy. In Section 4, we 

describe the experimental setup, including datasets, evaluation metrics, and implementation details. Section 5 discusses the results 

and analysis, comparing the performance of our approach with an existing method. Finally, Section 6 concludes the paper by 

summarizing the main contributions and suggesting potential future research directions. 

 

2. RELATED WORK 

Image-based 2D object recognition methods have achieved remarkable success. These methods provide valuable insights. For 

example, MFIL-FCOS [1] introduces a multi-scale interactive and hybrid learning framework that effectively combines features 

across scales and not only enhances 2D recognition but also makes it robust to object size variations. Comparative studies such as 

SIFT, SURF, and ORB descriptors [2] provide a fundamental understanding of feature extraction methods, highlighting the trade-

offs in accuracy and computational efficiency for 2D recognition tasks. TricubeNet [3] proposes a kernel-based representation for 

weakly occluded object recognition, which provides a novel approach to partial occlusion. Despite these advances in 2D object 

recognition, 3D object recognition based on LiDAR point clouds faces several challenges that various approaches have attempted to 

address. In this section, several different approaches to 3D object recognition are reviewed. 

PointNet-based methods have made great progress in 3D object recognition in recent years. These methods directly process raw point 

cloud data and provide an efficient alternative to more complex processes such as voxelization. The original PointNet model[4] 

improved the classification and segmentation of 3D data by processing each point independently and combining features through 

aggregation layers. This basic model has paved the way for the development of numerous models. For example, PointNet++ [5] 

introduced multi-level feature learning, which is able to detect local and global structures in the point cloud, increasing its power in 

processing complex geometries. The PointRCNN model [6] extracts high-quality 3D propositions from raw point cloud data using 

PointNet layers and then improves them with a region-based process. VoteNet [7]uses a voting mechanism to accurately locate object 

centers and generate bounding boxes. Furthermore, 3DSSD [8] eliminates the voxelization process, combines the PointNet++ model 

into a single-step recognition framework, and offers higher accuracy and efficiency in 3D object recognition. Finally, STD [9] moves 

from sparse to dense representations and extracts better and more accurate features for recognition by using spherical anchors and 

voxelization. 

Occlusion in point clouds is one of the main challenges in 3D object recognition, which occurs when objects are partially or 

completely hidden. This problem arises due to the lack of complete features of hidden objects and the increased complexity in 

recognizing different objects. In this situation, it becomes more difficult to distinguish between different objects and the recognition 
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accuracy decreases. LiDAR-based automated driving systems face more difficulties in low-density points in distant objects, 

especially on highways. To address this issue, Wang et al. [10]  introduced a domain matching method that aligns the features of 

distant objects with near objects and improves recognition, although it is involved in various forms. AGO-Net  [11] enhances detection 

under occlusion by combining incomplete perceptual features from real-world data with complete conceptual features from 

augmented 3D models. It uses a perceptual encoder, a conceptual generator, a feature association module, and a reweighting module 

to improve classification and localization accuracy.  Other methods offer different solutions to this problem. ODSPC [12] combines 

semantic and point cloud information to improve recognition in obstructed scenarios. The monocular detection approach [13] 

increases visibility and accuracy using a single camera. DR.CPO [14] trains models with realistic obstruction patterns to make them 

more robust. MOSE [15] uses scene cues to improve detection of roadside objects even when objects are partially hidden. X-ray 

distillation [16] transfers knowledge to enhance detection under obstruction. These methods provide significant advances for 

improving 3D object recognition in challenging conditions such as obstruction, especially for autonomous driving. 

Graph neural networks are able to improve the recognition accuracy of 3D objects by handling the irregular and disordered structure 

of point clouds. Unlike convolutional neural networks that face challenges with irregular data, graph neural networks represent 3D 

points as graph nodes and model their relationships through edges, enabling them to adapt to 3D space and improve recognition 

accuracy. The Point-GNN method [17] uses a single-stage graph-based model to recognize objects in point clouds, using fixed-radius 

connections to capture local features, and using GNN to process these features for classification and bounding box generation. 

Another approach [18] combines GNN feature learning with angular features, leading to improved object recognition accuracy in 

point cloud data.  A semi-supervised approach [19] uses temporal graph neural networks to recognize 3D objects, reducing the need 

for labeled data and improving recognition. Dynamic graph CNN [20] introduces a novel approach to dynamically build and update 

graph structures based on local geometric relationships in point clouds, which improves feature learning and 3D object recognition 

accuracy. 

In recent years, knowledge distillation has been widely used in 3D object recognition in autonomous vehicles. In knowledge 

distillation, a teacher model, usually a large and complex network, provides predictions or representations that guide the student, 

usually a small network, during training. Thus, a lightweight student model can perform similarly or closely to the teacher by 

imitating a large teacher model. The framework proposed in [21]  consists of two teacher networks, the first teacher network is trained 

in a traditional way and provides guidance for intermediate representations and uses adversarial learning for alignment. The second 

teacher network guides the output probability distribution to the student network, but may be inefficient in providing accurate 

intermediate representations. To better transfer the intermediate knowledge, a discriminator is used, whose task is to predict the 

source of the intermediate representations as well as the class labels. Expanding on this theme, [22] presents knowledge distillation 

with a focus on useful information compression and noise removal. The teacher model transfers its knowledge to the student model 

to extract useful information and increase learning accuracy. In this method, suggested regions are selected from images or 3D point 

clouds that represent the target objects or background. For each suggested region in the teacher model, a similar region is identified 

in the student model and weighted with a distillation mask. This mask highlights more important regions for better learning, and the 

ultimate goal is to increase the mutual information between the features and the real labels to train the student model more accurately.  

In recent works, new knowledge distillation techniques have been applied to 3D object recognition. The itKD framework [23] uses 

a trade-off-based approach that uses compression and channel reconstruction to efficiently transfer knowledge for 3D object 

recognition. Pre-pruned distillation[24] combines network pruning with knowledge distillation to increase the efficiency of 

knowledge transfer in 3D object recognition. The CaKDP framework [25] incorporates cluster-aware knowledge distillation and 

pruning strategies and enables lightweight 3D recognition models while maintaining high accuracy. Also, Efficient 3D object 

recognition with knowledge distillation [26] focuses on using distillation techniques to develop efficient voxel- and column-based 

detectors. Finally, Structured Knowledge Distillation for Multi-View Recognition [27] provides a structured approach to distillation, 

optimizing multi-view 3D recognition and significantly improving model performance in complex scenarios. 

 

Although previous methods have achieved significant progress in addressing challenges as occlusion and computational efficiency, 

they often fail to balance real-time execution and high accuracy in resource-constrained environments. To address these issues, this 

paper introduces the following contributions:  

 

•  The proposed method divided point cloud data into two groups, TPS (Teacher Performs Strongly) and TPW (Teacher 

Performs Weakly), according to the performance of the teacher model. The student model applies adaptive weighted 

knowledge distillation by dynamically modifying its learning depending on whether the point cloud belongs to TPS or TPW, 

optimizing its ability to generalize.  In TPS cases, the student model relies more on the teacher’s knowledge, assigning a 

higher weight to teacher’s knowledge, whereas in TPW cases, the student prioritizes its own learning by reducing 

dependence on the teacher. 
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• A data pruning mechanism is implemented. This process creates a smaller and optimized version of the KITTI dataset based 

on the performance of the teacher model, while maintaining the proportion of TPS and TPW point cloud. This optimization 

enhances computational efficiency while maintaining detection performance. 

• A lightweight student model is designed to be more computationally efficient and resource-conscious than the teacher 

model. This design enables the model to perform well in real-time applications within resource-limited environments while 

maintaining high detection accuracy. 

 

3. PROPOSED METHOD 

In this section, we describe the proposed approach for 3D object detection from point clouds. As shown in Figure 1, the framework 

consists of three main steps: graph creation, Teacher-Student Adaptive Weighted Knowledge Distillation Module, and bounding box 

optimization. Unlike structured image data, point clouds are sparse and unevenly distributed, making convolutional neural networks 

(CNNs) unsuitable for direct processing. Some studies have employed neural networks that process unordered point sets to extract 

features without mapping them to a structured grid. However, these methods often require repeated sampling and grouping, which 

can be computationally expensive for large-scale point clouds. In our method, we employ a Graph Neural Network (GNN) that 

naturally adapts to the irregular and sparse structure of point clouds. In the graph creation phase, points are encoded as vertices of 

the graph, and edges of the graph connect neighboring points that are within a fixed radius to allow information to flow between 

neighbors. The graph neural network used takes a point as input and outputs the classification and bounding boxes of the objects to 

which each vertex belongs. 

In the Teacher-Student Adaptive Weighted Knowledge Distillation phase, we introduce an adaptive teacher-student learning strategy.  

The goal is to transfer the knowledge embedded within a large, complex teacher model to a smaller, lightweight student model. This 

is critical for achieving high accuracy while maintaining the computational efficiency required for real-time applications, such as 

self- driving cars . Offline distillation [28] is employed to achieve this transfer, as it does not require simultaneous training of the 

teacher and student models, significantly reducing resource demands. During the training phase, the proposed method involves two 

networks: the teacher and the student. Knowledge is distilled from the teacher to the student, allowing the student to learn efficiently 

while minimizing dependency on the larger teacher model. The teacher model evaluates each point cloud and groups it as TPS 

(Teacher Performs Strongly) or TPW (Teacher Performs Weakly) based on its recall, which reflects the teacher model’s confidence 

in its predictions. This grouping dynamically adjusts the weight of knowledge transfer, allowing the student model to either rely 

more on the teacher's predictions for TPS or prioritize independent learning from raw data for TPW.  

The bounding box refinement process improves object localization by refining the student model’s predictions. Since the neural 

network may generate multiple bounding boxes for the same object, Non-Maximum Suppression (NMS) is commonly applied to 

merge overlapping boxes and assign confidence scores. NMS selects the bounding box with the highest classification score while 

suppressing the others. However, relying solely on classification scores can lead to inaccuracies, especially for partially occluded 

objects. To enhance localization accuracy, a refinement step is applied to merge bounding boxes effectively, ensuring that detected 

objects are well-defined and robust to variations in the input data. The bounding box formation process and NMS algorithm are 

detailed in Appendices A and B.  As shown in Figure 2, during the execution phase, only the lightweight student model is utilized for 

inference. The student independently processes point cloud data, generating object proposals and refining bounding boxes to enhance 

detection accuracy. This design ensures computational and memory efficiency, making the student model well-suited for real-world 

deployment. Its efficiency is particularly advantageous in resource-limited environments, such as self-driving cars, where optimized 

resource usage and real-time performance are essential for safe and reliable operation. 

 



Adaptive Weighted Knowledge Distillation for 3D Object Detection in Self-Driving Cars Using Point Cloud 

122 

 

 

Figure 1: Overview of the training phase: (1) Graph Creation, where point clouds are processed to construct graph representations; 

(2) Teacher-Student Adaptive weighted Knowledge Distillation Module, where the teacher model transfers knowledge to the student 

model through adaptive distillation; and (3) Bounding Box Optimization, where bounding boxes are merged and refined for accurate 

object detection. 

 
Figure 2:  Execution Phase: The student model independently processes point clouds 

3.1 Building a new dataset for the student model 

To address the challenge of large computational requirements, we first created a small dataset from KITTI train based on the 

performance of the teacher model. In applications such as 3D object detection in self-driving cars, safety is of great importance, so 

high recall may be prioritized to ensure that all potential hazards are detected, even if it means having more false positives. 
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3.1.1 Examining the Performance of the Teacher Model 

 

In 3D object detection, evaluation metrics such as Recall is used to evaluate the performance of the model. Recall measures the 

proportion of true positives that the model correctly identifies. A high value of Recall indicates that the model is relevant in 

recognizing all objects but may also include more false positives. The formula for Recall is given in Equation (1): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=  

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                       (1)        

To evaluate the performance of the teacher model on the point cloud, the Recall metric is computed for each point cloud across all 

four classes. Vehicles are divided into two categories based on viewing angle: vehicle side view and vehicle front view, this division 

is done based on the yaw angle (the angle of rotation of the vehicle in the horizontal plane). Yaw is the angle that indicates the 

orientation of the vehicle relative to the camera or sensor.  Side view vehicle: Vehicles whose yaw angle is in the range [−π/4, π/4] 

are considered as side view vehicles. That is, if the vehicle is viewed from an angle between -45 degrees and +45 degrees relative to 

the sensor, it is classified as side view. Front view vehicle: Vehicles whose yaw angle is in the range [π/4, 3π/4] are considered as 

front view vehicles. That is, if the vehicle is seen from an angle between +45 degrees and +135 degrees to the sensor, it is classified 

as front view.  Each point is assigned a class based on its spatial location: if it falls inside an object’s bounding box, it is classified as 

the corresponding object class; if it lies outside any bounding box, it is assigned as background. Additionally, points that do not 

belong to any bounding box and do not contribute to object detection are labeled as 'Do not care' and excluded from loss computation. 

The recall thresholds of 0.68 and 0.98 were determined based on an empirical analysis of the teacher model's performance on all 

point clouds. Recall values below 0.68 reflected weak performance due to a high rate of false negatives, making it the lower limit for 

TPW point clouds. The upper threshold of 0.98 was selected because all "Don’t care" point clouds consistently exceeded this value, 

with no other classes reaching it.  These thresholds were validated through iterative testing to ensure effective categorization and 

alignment with the objectives of the adaptive weighted knowledge distillation method.  The grouping of point clouds based on these 

recall thresholds is formulated as follows: 

Point Cloud Grouping = {
 TPS (Teacher Performs Strongly)  𝑖𝑓 0.68 ≤ 𝑅𝑒𝑐𝑎𝑙𝑙 < 0.98

 TPW (Teacher Performs Weakly)  𝑖𝑓𝑅𝑒𝑐𝑎𝑙𝑙 < 0.68
                                                (2) 

After analyzing the teacher model's Recall performance for the three classes, the number of classes in which the teacher performed 

well (i.e., Recall within the range 0.68 ≤ Recall < 0.98) is counted. Based on this count, the point clouds are divided into two groups: 

1. TPS (Teacher Performs Strongly):                                                                                                               

If the teacher model performs well in two or all three classes (i.e., Recall for two or three classes falls in the range 0.68 ≤ 

Recall < 0.98), the corresponding point cloud is considered as TPS. This indicates that the teacher model has provided 

reliable predictions for the majority of classes in this point cloud.  

2. TPW (Teacher Performs Weakly):                                                                                                                                             

If the teacher model does not perform well in two or all three classes (i.e., Recall for two or three classes falls below 0.68), 

the corresponding point cloud is considered as TPW. This indicates that the teacher model struggled to generate accurate 

predictions for most classes in this point cloud. 

This framework allows for adaptive evaluation of the teacher’s performance across multiple classes, enabling the student model to 

apply adaptive weighted learning strategies tailored to TPS and TPW. 
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3.1.2 Knowledge Distillation Based on Teacher Model Performance 

In this paper, we propose a new approach to knowledge distillation that dynamically adapts the learning process based on the teacher 

model's performance. By dividing data into two groups  TPS  and TPW  the student model can effectively balance learning from the 

teacher with refining its own predictions, resulting in greater efficiency and accuracy in 3D object detection. The categorization into 

TPS and TPW is determined by the Recall of the teacher model. The weights of the loss components are then adjusted based on 

whether the data is divided as TPS or TPW.  

For TPS point clouds, where the teacher provides accurate and reliable predictions, we place greater emphasis on the distillation loss. 

By assigning higher weight to the distillation loss and reducing the weight of the student’s initial loss, the student model can better 

mimic the teacher’s knowledge and quickly learn key patterns. In contrast, for TPW point clouds, where the teacher struggles to 

make accurate predictions, the student model relies more on its own learning. In such cases, the weight of the student’s initial loss is 

increased, and the reliance on distillation loss is minimized. By focusing more on the ground truth data, the student model 

independently refines its predictions while still partially utilizing the teacher’s knowledge. This adaptive strategy ensures that the 

student focuses on imitating the teacher for TPS point clouds, where the teacher's performance is strong, and prioritizes independent 

learning for TPW point clouds, where the teacher’s guidance is less reliable. This approach improves the student’s overall learning 

process based on the teacher model’s performance. This process is mathematically expressed in Equation 3. In this equation, 𝑙𝑡𝑜𝑡𝑎𝑙_𝑆𝑡𝑑 

 represents the total loss for the student model, combining two weighted components: 𝑙𝑆𝑡𝑑, which is the loss from the student model’s 

independent learning based on ground truth data, and 𝑙𝑡𝑜𝑡𝑎𝑙𝑙_𝐷𝑖𝑠𝑡𝑖𝑙𝑙  , which represents the knowledge distillation loss. A more detailed 

explanation about Equation 3 and assigning  𝑤1 and 𝑤2 can be found in Section 3.2.  

𝑙𝑡𝑜𝑡𝑎𝑙_𝑆𝑡𝑑 = 𝑤1( 𝑙𝑆𝑡𝑑) + 𝑤2( 𝑙𝑡𝑜𝑡𝑎𝑙𝑙_𝐷𝑖𝑠𝑡𝑖𝑙𝑙  )                                                                                                                            (3) 

3.1.3 Soft Targets 

Soft targets use logits, which represent the inputs of the last softmax, to learn the student's model, and the contribution of each soft 

goal to knowledge distillation is modulated using the temperature parameter. Knowledge distillation from the teacher model to the 

student model is performed using a distillation cost function, the distillation function uses soft objectives to minimize the squared 

difference between the logits produced by the teacher model and the logits produced by the student model[28]. 

Response-based knowledge distillation uses the response of the last layer of the teacher model, and its main idea is to directly imitate 

the final prediction of the teacher model. Response-based knowledge distillation is simple yet effective for model compression, and 

therefore has been widely used in various tasks and applications. If we consider the output of the last fully connected layer of a deep 

model as the z-logit, the loss function in response-based knowledge distillation can be formulated as follows[28]. 

 

𝐿𝑅𝑒𝑠𝐷(𝑧𝑡 , 𝑧𝑠 ) = ℒ𝑅 (𝑧𝑡 , 𝑧𝑠 )                                                                                                                                                 (4) 

 



January 2024, Volume 1, Issue 2 

125 

In Equation 4, ℒ𝑅  (. ) is the logit divergence loss, and 𝑧𝑡  and 𝑧𝑠  are the teacher and student logits, respectively. The most popular 

response-based knowledge for image classification is known as soft targets. Soft targets are probabilities that the input belongs to 

the classes and can be estimated by a softmax function. 

 

𝑝 (𝑧𝑖 , T) =
exp (

𝑧𝑖
T⁄ )

∑ exp (
𝑧𝑖

T⁄ )𝑗
                                                                                                                                                   (5) 

In Equation 5, 𝑧𝑖  is the logit for class i, and a temperature coefficient T is introduced to control the importance of each soft target. 

The soft targets contain dark knowledge information from the teacher model. The distillation loss for soft logits can be rewritten as 

follows: 

 

𝐿𝑅𝑒𝑠𝐷(𝑝(𝑧𝑡 , T), 𝑝(𝑧𝑠 , T)) = ℒ𝑅 (𝑝(𝑧𝑡 , T), 𝑝(𝑧𝑠 , T))                                                                                                  (6) 

   

 

3.2 Student's Loss Function 

 

To classify an object in the student model, we compute a multiclass probability distribution {𝑝𝑐1, … . , 𝑝𝑐𝑀}  for each vertex. If a vertex 

is in an object bounding box, we assign it the object class, and if a vertex is outside the bounding box, we assign it the background 

class. For the classification loss, we use the average cross-entropy loss as shown is Eq. (7):  

𝑙𝑐𝑙𝑠𝑆𝑡𝑑 =  −
1

𝑁
∑ ∑ 𝑦𝑐𝑗

𝑖𝑀
𝑗=1

𝑁
𝑖=1 log (𝑝𝑐𝑗

𝑖 )                                                                                                                         (7) 

𝑙𝑙𝑜𝑐𝑆𝑡𝑑 =
1

𝑁
∑ (𝑣𝑖  ∈ 𝑏𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡) ∑ 𝑙ℎ𝑢𝑏𝑒𝑟 𝛿∈𝛿𝑏𝑖

(𝛿 − 𝛿𝑔𝑡)𝑁
𝑖=1                                                                                           (8) 

In Eq. (7), 𝑝𝑐
𝑖  represents the predicted probability of vertex 𝑖 belonging to class 𝑐, where 𝑐 ∈ 𝑀 {1,2, … , 𝑀} and 𝑀 is the total number 

of classes. Similarly, 𝑦𝑐
𝑖   represents the one hot class label for the 𝑖 − 𝑡ℎ vertex.  

If a vertex is in a bounding box, we calculate the Huber loss between the ground truth and our prediction, and if a vertex is outside 

the bounding boxes or belongs to a class that we do not need to locate, we set its location loss to zero. To prevent overfitting, we add 

L1 regularization to each MLP. Kullback-Leibler (KL) divergence is used to calculate the divergence between the smoothed 

probabilities of the teacher and the student (𝑙𝑑𝑖𝑠𝑡𝑖𝑙𝑙), which measures the extent to which the student's predictions differ from the 

teacher's predictions. Huber loss is used to minimize the difference between the predictions of the student and teacher's bounding 

boxes (𝑙𝑙𝑜𝑐𝐷𝑖𝑠𝑡𝑙). The final loss for the student is represented as 𝑙𝑡𝑜𝑡𝑎𝑙_𝑆𝑡𝑑, as shown in Equation (9):  

𝑙𝑡𝑜𝑡𝑎𝑙_𝑆𝑡𝑑 = 𝑤1( 𝑙𝑐𝑙𝑠𝑆𝑡𝑑 +  𝑙𝑙𝑜𝑐𝑆𝑡𝑑 +  𝑙𝑟𝑒𝑔𝑆𝑡𝑑) +  𝑤2( 𝑙𝑑𝑖𝑠𝑡𝑖𝑙𝑙 + 𝑙𝑙𝑜𝑐𝐷𝑖𝑠𝑡𝑙  )                                                                           (9) 

To enhance the adaptability of the student model, we dynamically adjust the weight coefficients 𝑤1 and 𝑤2 based on the TPS and 

TPW for each point cloud. If a point cloud is considered as TPS (Teacher Performs Strongly), 𝑤2 is assigned a higher value than 𝑤1

, prioritizing knowledge distillation from the teacher model while still allowing the student to contribute with a lower weight. This 

approach ensures that the student benefits from the teacher’s high-confidence predictions while simultaneously refining its own 

learning process. By doing so, the student gains structured guidance from the teacher but also develops flexibility, which helps it 

adapt to new, unseen scenarios where the teacher’s rigid patterns may not fully generalize. On the other hand, if a point cloud is 

considered as TPW (Teacher Performs Weakly), 𝑤1  is assigned greater importance than 𝑤2 , emphasizing direct learning from raw 

data. However, the teacher’s knowledge is not entirely ignored; instead, it is used with a lower weight to provide subtle guidance 

rather than direct supervision. This ensures that the student does not completely rely on potentially unreliable teacher predictions but 

still benefits from any valuable insights. This balanced strategy strengthens the student’s generalization ability, making it more robust 

in handling complex and ambiguous cases where the teacher’s performance is less reliable. By striking this balance, the student 

develops stronger generalization abilities and robustness, making it capable of handling complex and ambiguous cases where the 

teacher’s performance is less reliable. 

3.3 Preprocessing 

A point cloud usually contains a large number of points, and constructing a graph with all points as vertices imposes a significant 

computational burden on the network. In 3D object detection, a voxel is the 3D equivalent of a pixel in 2D images. We divide the 

3D space containing the point cloud into a grid of these small cubes (voxels). For each voxel, only one representative point is kept, 

and all other points in that voxel are discarded. This process reduces the density of the point cloud by removing redundant points, 

while still retaining enough points to maintain the overall structure because points that are spatially close are grouped into a voxel, 

and one point is kept for that voxel. While voxel-wise sampling reduces the number of points, the rich information of the dense point 

cloud is not lost by encoding important information in the initial state of each vertex of the graph. 

To preserve the information within the original point cloud, we encode the dense point cloud into the initial state value 𝑠𝑖  of the 

vertex. We search the raw points within radius 𝑟0 of each vertex and embed the LiDAR reflectance intensity and relative coordinates 
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using an MLP, then we aggregate these features to select the most salient features and use the obtained features as the initial state 

value 𝑠𝑖  of the vertex. Each vertex of the graph has a state 𝑠𝑖  that contains object information and is updated at each iteration. We 

consider the state 𝑠 as the vertex features, which initially contain the vertex features but after processing by the graph neural network 

contain more complex information about the object class to which the point belongs as well as the information of the bounding box 

of the object. 

3.4 Graph Creation 

In a graph neural network, a point cloud consists of 𝑁 points, each point containing three-dimensional coordinates and a point 

attribute. We define a point cloud consisting of 𝑁 points as P = {𝑃1, ...,𝑃𝑁  } where  𝑃𝑖  = (𝑥𝑖  , 𝑠𝑖)   is a point with three-dimensional 

coordinates 𝑥𝑖  ∈  𝑅3   and 𝑠𝑖  ∈  𝑅𝑘  is a vector of length k representing the point information. 

Each point in the point cloud is considered as a vertex of the graph. And by connecting a point to its neighbors located within a fixed 

radius, the graph is formed. Examining the distance between each pair of points to determine their neighborhood can be 

computationally expensive. To speed up the process of finding neighboring points, we divide the 3D point cloud into a grid of small 

sections. Then, instead of comparing each point in the point cloud with every other point, we only need to examine the points in the 

small region (where the point is located) and the neighboring cells. This approach reduces the number of comparisons needed to find 

neighbors. 

A graph neural network modifies the vertex feature by aggregating features along the edges. To do this, we extract all the features of 

a vertex and then extract the edge features. We aggregate the edge features and finally update the vertex feature. 

𝑉𝑖
𝑡+1 =  𝑔𝑡(𝑝 ({ 𝑒𝑖𝑗

𝑡  | (𝑖, 𝑗) ∈ 𝐸}), 𝑣𝑖
𝑡)                                                                                                                           (10) 

𝑒𝑖𝑗
𝑡  = 𝑓𝑡(𝑣𝑖

𝑡 , 𝑣𝑗
𝑡)                                                                                                                                                                (11) 

𝑒𝑡  and 𝑣𝑡   are the edge and vertex features from the 𝑡𝑡ℎ iteration. The function 𝑓𝑡(. )  ،computes the edge feature between vertex 𝑖 and 

its neighbor vertex 𝑗 at iteration 𝑡, ρ(.) sums all edge features for vertex 𝑖 and combines the information of all neighboring vertices. 

𝑔𝑡(. )  combines the summed edge features with the current feature of vertex 𝑖 to produce the updated feature of vertex 𝑖 at iteration 

t+1. This process is repeated multiple times for each vertex, helping the vertices to refine their understanding of the graph structure 

based on their neighboring vertices. 

3.5 Translational Motion in the Point Cloud 

If you use absolute coordinates 𝑥𝑖and 𝑥𝑗, it becomes problematic if the point cloud moves because the absolute positions of the points 

change and the model has to relearn these positions. Relative coordinates help the graph neural network understand how the points 

are spatially related. One of the main reasons for using relative coordinates is to achieve translation invariance, which means that the 

model can handle changes in the entire point cloud. For example, if the entire point cloud moves 5 meters to the right, the relative 

distance between the points remains the same. 

𝑠𝑖
𝑡+1 = 𝑔𝑡(𝜌({𝑓𝑡(𝑥𝑗 − 𝑥𝑖 , 𝑠𝑗

𝑡)|(𝑖, 𝑗) ∈ 𝐸}), 𝑠𝑖
𝑡)                                                                                                      (12) 

 𝑓𝑡(𝑥𝑗 − 𝑥𝑖 , 𝑠𝑗
𝑡) instead of using vertex features to calculate edge features, it uses the relative coordinates between two vertices and 

the 𝑠𝑗
𝑡  feature of the neighboring vertex. This helps the model calculate spatial relationships between points. The model looks at 

points in relation to their neighbors, which helps it focus on the shape and structure of the object rather than its absolute position. 

This makes the model invariant to translational motion, which means it can accurately detect objects near, far, or at any different 

location in the hypersphere. 

Relative coordinates help the model to remain insensitive to large changes, but local transitions can still cause changes in the model 

input. When a vertex experiences a small local transition, for example, it moves slightly due to sensor noise, the relative coordinates 

between the vertex and its neighbors change, increasing the variability in the network inputs. To overcome this problem, the 

coordinates of neighboring vertices can be dynamically adjusted to account for small local transitions. A vertex that is to be updated 

has its own feature or state from the previous stage, represented as 𝑠𝑖
𝑡. A graph neural network using 𝑠𝑖

𝑡 uses an offset for its 

neighboring vertices, which helps adjust the position of neighboring vertices relative to the vertex being updated. 

 ∆𝑥𝑡
𝑖 = ℎ𝑡(𝑠𝑖

𝑡)                                                                                                                                                       (13) 

 ∆𝑥𝑖
𝑡 =  𝑀𝐿𝑃𝑡

ℎ(𝑠𝑖
𝑡)                                                                                                                                                (14) 

𝑒𝑖𝑗
𝑡 = 𝑀𝐿𝑃𝑡

𝑓
([𝑥𝑗 −  𝑥𝑖 + ∆𝑥𝑖

𝑡 , 𝑠𝑗
𝑡])                                                                                                                        (15) 

𝑠𝑖
𝑡+1 = 𝑀𝐿𝑃𝑡

𝑔
(𝑀𝑎𝑥({𝑒𝑖𝑗

𝑡 |(𝑖, 𝑗) ∈ 𝐸})) + 𝑠𝑖
𝑡                                                                                                        (16) 

In equation (14), MLP takes the current state (𝑠𝑖
𝑡)of the vertex and calculates an offset that adjusts the vertex position to reduce the 

effect of local translational motion. Equation (15) shows the calculation of the edge feature between vertex 𝑖 and vertex 𝑗 based on 

the relative coordinates and the neighbor feature. In equation (16), the Max function collects the edge features from all neighboring 
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vertices 𝑗 connected to vertex 𝑖 and collects the most important information from the neighbors. The state of vertex 𝑖 in the next 

iteration is updated based on the important features collected from the neighbors and the previous state. 

3.6 Teacher’s Loss Function 

For object classification, we compute a multiclass probability distribution { 𝑝𝑐1, … . , 𝑝𝑐𝑀}for each vertex. If a vertex is in an object 

bounding box, we assign it the object class, and if a vertex is outside the bounding box, we assign it the background class. For the 

classification loss, we use the average cross-entropy loss, where 𝑝𝑐
𝑖   is the predicted probability and   𝑦𝑐

𝑖is the class label for vertex 𝑖. 

𝑙𝑐𝑙𝑠𝑠Tchr =  −
1

𝑁
∑ ∑ 𝑦𝑐𝑗

𝑖𝑀
𝑗=1

𝑁
𝑖=1 log (𝑝𝑐𝑗

𝑖 )                                                                                                                        (17) 

𝑙𝑙𝑜𝑐Tchr =
1

𝑁
∑ (𝑣𝑖  ∈ 𝑏𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡) ∑ 𝑙ℎ𝑢𝑏𝑒𝑟 𝛿∈𝛿𝑏𝑖

(𝛿 − 𝛿𝑔𝑡)𝑁
𝑖=1                                                                                           (18) 

If a vertex is in a bounding box, we calculate the Huber loss between the ground truth and our prediction, and if a vertex is outside 

the bounding boxes or belongs to a class that we do not need to locate, we set its location loss to zero, which is done in a similar way 

to [17], (see Appendix A). To avoid overfitting, we add L1 regularization to each MLP. The final loss for the teacher is represented 

as 𝑙𝑡𝑜𝑡𝑎𝑙_Tchr, as shown in Equation (19):  

𝑙𝑡𝑜𝑡𝑎𝑙_Tchr =  𝑙𝑐𝑙𝑠Tchr + 𝑙𝑙𝑜𝑐Tchr +  𝑙𝑟𝑒𝑔Tchr                                                                                                                                       (19) 

 

3.7 Bounding Boxes 

In point clouds, multiple vertices can belong to the same object. As a result, the neural network can generate multiple bounding boxes 

for the same object, which is problematic because we only want one accurate bounding box for each object. To overcome this 

problem, we need to merge the bounding boxes into a single box and assign it a confidence score that reflects both the classification 

and localization quality. The standard method to achieve this goal is called non-maximum suppression. In essence, we select the box 

with the highest classification score and remove all other boxes that overlap with it. To improve the localization accuracy, similar to 

the method in [17], we calculate the merged box by considering the entire cluster of overlapping boxes (see Appendix B).  

 

4. EXPERIMENTAL RESULTS 

4.1 Dataset 

The KITTI 3D object detection dataset[29] , is the most widely used benchmark for 3D object detection, consisting of a training 

image and a test image, as well as the corresponding point clouds. Although 8 different classes are labeled in the dataset. Only the 

car and pedestrian classes are evaluated in the benchmark dataset, the following are only those classes that are labeled sufficiently 

for a comprehensive evaluation. In this paper, the focus is on the car class. 

 

4.2 New dataset for student 

The details of constructing a new dataset based on the performance of the teacher model are described in Section 3.1. After identifying 

TPS and TPW  point clouds based on the teacher model's performance, we examine the ratio of TPS and TPW point clouds in KITTI 

training set. Due to the severe resource limitation for conducting the research, we select 1000 data as the new dataset while 

maintaining the original ratio of TPS and TPW ratio to ensure that the student model encounters TPW point clouds in the same 

proportion as the teacher model. Finally, the new dataset consists of 900 TPS random point clouds and 100 TPW random point 

clouds. 

4.3 Evaluation Metrics 

In 3D object detection, evaluation metrics such as Recall, Precision, and Average Precision (AP) are used to evaluate the performance 

of the model. Recall, which measures the proportion of true positives correctly identified by the model, has been thoroughly explained 

in Section 3.1.1. In this section, we focus on other evaluation metrics such as Precision and AP. Precision measures the proportion 

of identified samples that are actually correct. A high Precision indicates that when the model recognizes an object, it is usually 

correct but may miss some objects. The Precision formula is given in Equation (20): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=  

𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                 (20) 

Average precision (AP) is the average of the precision values at different recall levels, providing a single number that summarizes 

the Precision-Recall curve. AP indicates the ability of the model to maintain high precision while increasing recall. Higher AP 

indicates a better balance between precision and recall at all threshold levels. 

4.4 Details of the Teacher and Student Model 

The teacher model is a Graph Neural Network (GNN) specifically designed to process point cloud data efficiently. It consists of four 

graph layers, each incorporating multiple MLPs to perform feature extraction, edge feature computation, and vertex updates. The 

model includes a primary MLP with dimensions (300,128,64,32) for extracting initial vertex features, followed by three additional 

MLP layers with dimensions (3,64), (300,300) for computing relationships between neighboring points, and (300,300) for updating 

vertex features. In comparison, the student model is a more lightweight version of the teacher model, designed with two fewer graph 
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layers to achieve a balance between accuracy and computational efficiency. Through adaptive weighted knowledge distillation, the 

student effectively learns from the teacher while requiring fewer parameters, enabling it to maintain similar performance. This 

reduction in complexity improves computational efficiency, making the student model well-suited for real-time applications. 

 

4.5 Numbers of Teacher and Student Parameters 

The details of the teacher and student model are given in Section 4-4. In this section, we will examine the number of parameters of 

the teacher and student model. The teacher with 4 graph layers has 940300 parameters. By removing the two graph layers, the student 

model has 549182 parameters. The student model, by removing two layers, has a smaller number of parameters than the teacher 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Comparison of the number of parameters in the teacher model and the student model. 

 

4.6 Number of computations per layer 

The teacher model is a Graph Neural Network (GNN) with four graph layers, while the student model is a more lightweight version 

with two fewer layers, designed to enhance computational efficiency. Each GNN layer comprises of two primary operations: vertex-

wise feature transformations and edge-wise message passing. For vertex-wise computations, an MLP processes each vertex's features, 

resulting in a total computation of 𝑉 × 524, where 𝑉 represents the number of vertices. The value 524 is derived from the total neurons 

across all MLP layers involved in vertex feature extraction, specifically 300, 128, 64, and 32 neurons, summing to 524.  For edge-

wise computations, interactions between connected vertices are calculated, resulting in a total computation of 𝐸 × 600, where 𝐸 

represents the number of edges. The value 600 is obtained from the neurons used in MLP layers for edge feature computations. Since 

the teacher model consists of four graph layers, its total computational cost is (𝑉 × 524 + 𝐸 × 600) × 4, while the student model, with 

two fewer graph layers, results in (𝑉 × 524 + 𝐸 × 600) × 2. By utilizing adaptive weighted knowledge distillation, the student model 

achieves comparable performance with significantly lower computational demands, making it more efficient for real-time 

applications. 

4.7 Results  

In this section, we analyze the results of our proposed method. The first part focuses on the comparison between the teacher and 

student models, examining their classification performance based on metrics such as Recall, Precision, and AP values. In the second 

part, the performance of the student model is compared with Point-GNN, a prominent baseline in 3D object detection, using the same 

metrics to highlight the effectiveness of our approach. 

4.7.1 Comparison of Teacher and Student Models 

In this subsection, we evaluate and compare the classification performance of the teacher and student models using metrics such as 

Recall, Precision, and AP values. Table 1 summarizes the results, and the following analysis highlights the strengths and weaknesses 

of each model across different classes. This comparison provides insights into the effectiveness of the knowledge distillation process 

applied to the student model. 
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Table 1: Comparison of Teacher and Student Results Based on Recall, Precision, and AP 

Teacher Model Student Model 

Class Recall Precision AP Class Recall Precision AP 

Do not care 0.989 0.982 0.997 Do not care 0.991 0.984 0.998 

Car side-view 0.668 0.770 0.767 Car side-view 0.684 0.776 0.771 

Car front-view 0.767 0.800 0.844 Car front-view 0.782 0.822 0.847 

Background 0.501 0.635 0.565 Background 0.521 0.660 0.578 

 

In the "Do not care" class, the two teacher and student models have almost similar results. The recall and precision of both models 

are close to 0.99, indicating that the data in this class is generally reliable and the teacher model has provided accurate predictions. 

In the "Car side-view" class, the student shows enhanced performance compared to the teacher. The recall of the teacher is 0.668, 

while the student model achieves a recall of 0.684. Additionally, the student's precision improves from 0.770 to 0.776, and the AP 

value is also higher than that of the teacher.   For the "Car front-view" class, the results show that the teacher attains a recall of 0.767, 

demonstrating relatively strong performance. The student further enhances these results, achieving a higher precision of 0.822 

compared to the teacher's 0.800  and an increased AP from 0.844 to 0.847. These improvements highlight the student model’s ability 

to maintain and slightly enhance detection accuracy in this class.  For the "Background" class, both the teacher and student models 

exhibit lower performance compared to other classes. The teacher model achieves a recall of 0.501, indicating difficulties in 

accurately predicting this class. The student model shows a slight improvement, achieving higher precision and AP values, though 

they remain lower than those of other classes. 

 

 

Figures 4 and 5 illustrate the training loss curves for the teacher and student models, respectively. Both models show a steep decline 

in loss during the initial training epochs, gradually stabilizing as training progresses. This demonstrates effective learning and 

convergence of both models. Notably, despite its reduced number of parameters, the student model achieves a loss reduction 

comparable to the teacher model, highlighting the effectiveness of the proposed knowledge distillation approach. 

 

4.7.2 Comparison of Student Model with Point-GNN 

This section compares the performance of the student model with Point-GNN [17], a widely recognized approach in 3D object 

detection.  The comparison focuses on key evaluation metrics, including Recall, Precision, and AP, across multiple classes, as 

summarized in Table 2. By analyzing these metrics, we aim to highlight the advantages of the adaptive weighted knowledge 

distillation framework implemented in the student model, showcasing its improvements over Point-GNN[17]. 

Figure 4: Training Loss Curve for the Teacher Model 
Figure 5: Training Loss Curve for the Student Model 
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Table 2: Comparison of Student Model with Point-GNN 

Student Model Point-GNN 

Class Recall Precision AP Class Recall Precision AP 

Do not care 0.991 0.984 0.998 Do not care 0.987 0.980 0.996 

Car side-view 0.684 0.776 0.771 Car side-view 0.649 0.744 0.748 

Car front-view  0.782 0.822 0.847 Car front-view 0.751 0.803 0.820 

Background 0.521 0.660 0.578 Background 0.498 0.635 0.543 

 

In the "Do not care" class, the student achieves a recall of 0.991, precision of 0.984, and AP of 0.998, slightly outperforming Point-

GNN [17], which attains 0.987, 0.980, and 0.996, respectively. T These results indicate that both models maintain a high level of 

reliability in this class. For the "Car side-view" class, the student achieves a recall of 0.684, precision of 0.776, and AP of 0.771, 

compared to Point-GNN’s recall of 0.649, precision of 0.744, and AP of 0.748. This shows that the student model enhances detection 

performance in this class. In the "Car front-view" class, the student attains a recall of 0.782, precision of 0.822, and AP of 0.847, 

outperforming Point-GNN [17], which achieves a recall of 0.751, precision of 0.803, and AP of 0.820. In the "Background" class, 

which presents more challenges due to data sparsity, the student achieves a recall of 0.521, precision of 0.660, and AP of 0.578, 

while Point-GNN [17] achieves lower values of 0.498, 0.635, and 0.543. Overall, the student model achieves higher recall, precision, 

and AP across all classes compared to Point-GNN [17]. These quantitative results highlight the effectiveness of the proposed 

approach in achieving better detection accuracy across different classes. 

 

4.7.3 Localization Results of Teacher and Student Models 

In this section, the results of the teacher-student model for positioning and estimating the dimensions of 3D objects in two classes of 

side view and front view of the vehicle are examined. These results include the positioning loss values and other geometric parameters 

such as 𝑥, 𝑦, 𝑧  3D coordinates of the center of the bounding box, 𝑙, h and 𝑤 are the length, height, and width of the bounding box, 

respectively, and θ the angle of rotation of the bounding box in the horizontal plane, which tells the model how the vehicle or object 

is rotated in space. 

 

Table 3: Comparison of Localization Results Between Teacher and Student Models 

Teacher model 

class 𝑥 𝑦 𝑧 𝑙 ℎ 𝑤 𝜃 Localization loss 

Car side-view 0.3810 0.1938 1.3103 0.4753 0.2016 0.1684 1.5462 0.6109 

Car front-view 0.3423 0.4506 2.2580 0.9209 0.4691 0.4235 1.0462 0.8443 

Student model 

class 𝑥 𝑦 𝑧 𝑙 ℎ 𝑤 𝜃 Localization loss 

Car side-view 0.3594 0.1839 1.2367 0.4467 0.1919 0.1618 1.5363 0.5965 

Car front-view 0.3336 0.4373 2.2314 0.8924 0.4558 0.4155 1.0329 0.8302 

 

  

In the "Car side-view" class, the student achieves a lower localization loss (0.5965) compared to the teacher (0.6109). Additionally, 

the z-coordinate estimation improves from 1.3103 to 1.2367, indicating a reduction in depth estimation errors. The student also shows 

slight improvements in length, height, and width estimations, leading to more accurate bounding box localization. In the “Car front-

view” class, the student also demonstrates better localization accuracy, achieving a lower localization loss of 0.8302 compared to 

0.8443 in the teacher. The z-coordinate estimation improves from 2.2580 to 2.2314, along with minor refinements in bounding box 

dimensions. These results indicate that the student outperforms the teacher in localization accuracy, achieving lower localization loss 

and better depth estimation in both object classes. 
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Figures 6 and 7 compare the localization loss and bounding box parameters between the teacher and student models for car side-

view and front-view classes. The results illustrate the improvements in depth estimation and overall localization accuracy of the 

student model. 
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Figure 6: Comparison of localization loss and bounding box parameters between teacher and student models for car side-view 
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Figure 7: Comparison of localization loss and bounding box parameters between teacher and student models for car front-view 
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4.9 Ablation Study 

This section presents an ablation study to investigate the influence of key components in the proposed model. The study assesses the 

contribution of adaptive weighted knowledge distillation mechanisms, the depth of the teacher model, and the number of neurons in 

the network in determining overall performance.  The experiments include an analysis of the effects of removing the adaptive 

weighted knowledge distillation, which dynamically adjusts loss weights based on the teacher's performance. Additionally, we 

explored the effect of reducing the teacher model's depth from 4 to 3 layers, while maintaining the adaptive weighted knowledge 

distillation framework. Finally, we analyzed the performance by decreasing the number of neurons in both the teacher and student 

networks from 300 to 200. The results of these experiments, summarized in Table 3, provide valuable insights into how these changes 

affect recall, precision, and AP metrics across the four defined classes for both teacher and student models. 

Table 4 :Ablation study analyzing the impact of key architectural and training modifications on model performance 

 

The ablation study examines the effects of key architectural and training modifications on model performance. Table 4 summarizes 

the results for three main experiments: the removal of adaptive weighted knowledge distillation, reducing the depth of the teacher 

model from 4 to 3 layers, and decreasing the number of neurons from 300 to 200. The results show that eliminating the adaptive 

weighted mechanism leads to a decline in recall, precision, and AP values across all classes, with a more noticeable drop in 

challenging classes such as "Car side-view" and "Car front-view." Reducing the teacher model’s depth leads to a consistent drop in 

detection accuracy, affecting both teacher and student models. Additionally, decreasing the number of neurons results in a decline in 

performance, especially in complex classes where detailed feature extraction is critical. These results highlight the quantitative impact 

of each modification on detection performance, emphasizing the role of model complexity in maintaining accuracy. 

 

5. CONCLUSION 

In this paper, we proposed an Adaptive Weighted Knowledge Distillation framework for 3D object detection in self-driving cars 

using point cloud data. Our approach dynamically regulates the knowledge transfer process based on the teacher model’s 

Experiment class Model Recall Precision AP 

 

 

Removal of Adaptive Weighted Mechanism 

 

Do not care 

 

Teacher 0.989 0.982 0.997 

Student 0.988 0.983 0.997 

Car side-view Teacher 0.668 0.770 0.767 

Student 0.670 0.773 0.766 

 

Car front-view 

Teacher 0.767 0.800 0.844 

Student 0.774 0.815 0.846 

 

Background 

Teacher 0.501 0.635 0.565 

Student 0.508 0.649 0.573 

 

 

Teacher Depth Reduction: 4 to 3 Layers 

(with Adaptive Weighted Knowledge 

Distillation) 

Do not care 

 

Teacher 0.989 0.980 0.994 

Student 0.987 0.980 0.996 

Car side-view Teacher 0.634 0.743 0.740 

Student 0.648 0.752 0.753 

 

Car front-view 

Teacher 0.729 0.779 0.817 

Student 0.734 0.797 0.829 

 

Background 

Teacher 0.474 0.598 0.552 

Student 0.489 0.617 0.560 

 

 

Decreasing Neurons Across Teacher and 

Student Networks: 300 to 200  (with 

Adaptive Weighted Knowledge Distillation) 

 

 

 

 

Do not care 

 

Teacher 0.987 0.982 0.995 

Student 0.986 0.984 0.996 

Car side-view Teacher 0.637 0.753 0.750 

Student 0.648 0.772 0.765 

 

Car front-view 

Teacher 0.743 0.778 0.827 

Student 0.757 0.802 0.833 

 

Background 

Teacher 0.484 0.623 0.550 

Student 0.499 0.636 0.574 
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performance, ddividing point clouds into TPS (Teacher Performs Strongly) and TPW (Teacher Performs Weakly). For TPS, a higher 

knowledge distillation weight and a lower student loss weight were assigned, which has allowed the student model to learn more 

accurate patterns than the teacher model. On the other hand, in TPW the student model was able to improve its results somewhat by 

increasing the initial loss weight and relying more on raw data. Additionally, a data pruning mechanism was introduced to optimize 

dataset size while maintaining the TPS-TPW ratio. Overall, this research investigates that using a smart approach in assigning 

different weights to the distillation and student losses can effectively help improve the performance of lighter models. This method 

not only keeps the model accuracy close to the teacher accuracy and even achieves better accuracy than the teacher model in some 

cases, but also avoids the consumption of large computational resources and provides a suitable solution for implementation in 

resource-constrained systems, such as self-driving cars. For future research, several directions can be explored:  

 

1. Enhancing the Teacher Model: Future research could focus on employing state-of-the-art 3D object detection networks as 

teacher models Utilizing more advanced and well-optimized teacher models would strike a better balance between 

complexity and accuracy can be achieved, providing a stronger foundation for the knowledge distillation process. This could 

further enhance the performance of the student model while preserving computational efficiency. 

2. Dataset Independence in Knowledge Distillation: The current approach relies on access to the original dataset for effectively 

training the student model. Future work could investigate data-free knowledge distillation methods, which generate 

synthetic data or transfer knowledge without requiring access to the real dataset. This would make the proposed framework 

more adaptable for privacy-sensitive environments or situations with limited availability of labeled data. 

3. Dynamic Model Adaptation for Real-Time Scenarios: Future work could focus on designing a student model capable of 

dynamically adjusting its architecture or computational requirements based on the complexity of the input data. This 

approach would allow the model to conserve computational resources for simpler inputs while keeping high accuracy for 

more challenging cases This could ensure that the model keeps high accuracy for challenging cases while conserving 

computational resources for simpler inputs, making it even more suitable for real-world applications such as self-driving 

cars and robotics. 
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APPENDIX A 

 

The bounding box of the object is predicted as 𝑏 = (𝑥, 𝑦, 𝑧, 𝑙, ℎ, 𝑤, 𝜃)where (𝑥, 𝑦, 𝑧)  is the center position of the bounding box, 

(𝑙, ℎ, 𝑤)represents the length, width and height of the bounding box respectively, and 𝜃 is the Yaw angle. We encode the bounding 

box with vertex coordinates (𝑥𝑣, 𝑦𝑣,, 𝑧𝑣,)as follows: 

 

𝛿𝑥 =
𝑥−𝑥𝑣

𝑙𝑚
 , 𝛿𝑦 =

𝑦−𝑦𝑣

ℎ𝑚
 , 𝛿𝑧 =

𝑧−𝑧𝑣

𝑤𝑚
                                                                                                                           (A-1) 

𝛿𝑙 = log (
𝑙

𝑙𝑚
) , 𝛿ℎ = log (

ℎ

ℎ𝑚
) , 𝛿𝑤 = log (

𝑤

𝑤𝑚
)                                                                         (A-2)  𝛿𝜃 =

𝜃−𝜃0

𝜃𝑚
      (A-3) 

 

In the above equations, 𝑙𝑚, ℎ𝑚, 𝑤𝑚 , 𝜃0, 𝜃𝑚 are constant scale factors. The localization predicts the encoded bounding box 𝛿𝑏 =
(𝛿𝑥, 𝛿𝑦 , 𝛿𝑧, 𝛿𝑙, 𝛿ℎ, 𝛿𝑤, 𝛿𝜃)for each class. If a vertex is in a bounding box, we calculate the Huber loss between the ground truth and 

the prediction. If a vertex is outside the bounding box or belongs to a class that we do not need to locate, we set its localization loss 

to zero. Then the localization loss of all vertices is averaged: 

 

𝑙𝑙𝑜𝑐 =
1

𝑁
∑ (𝑣𝑖  ∈ 𝑏𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡) ∑ 𝑙ℎ𝑢𝑏𝑒𝑟 𝛿∈𝛿𝑏𝑖

(𝛿 − 𝛿𝑔𝑡)𝑁
𝑖=1                                                                                      (A-4) 

 

APPENDIX B 

In localization, there may be multiple vertices on an object, and the neural network can output multiple bounding boxes of an object. 

These bounding boxes need to be merged into one and a confidence score assigned. Non-maximal suppression has been widely used 

for this purpose. The common approach is to select the box with the highest classification score and remove other overlapping boxes. 

However, the classification score does not always reflect the quality of localization. For example, a partially occluded object may 

have a strong clue indicating the type of object, but lack sufficient shape information. Standard non-maximal suppression may select 

an incorrect bounding box base based on classification alone. 

 

To improve the localization accuracy[17], calculates the merged box by considering the entire cluster of overlapping boxes. The 

position and median size of the overlapping bounding boxes are considered and the confidence score is calculated as the sum of the 

classification scores weighted by the intersection of union (IoU) factor and an overlap factor. The overlap factor represents the 

proportion of the occupied volume. A box 𝑏𝑖  has 𝑙𝑖   ،𝑤𝑖،  ،ℎ𝑖, as its length, width, and height, respectively, and 𝑣𝑖
𝑙     ، 𝑣𝑖

𝑤   ،𝑣𝑖
ℎ are unit 

vectors representing their directions, respectively. 𝑥𝑗is the coordinate of point 𝑝𝑗. The occlusion factor 𝑜𝑖is as follows: 

 

𝑜𝑖 =
1

𝑙𝑖 𝑤𝑖 ℎ𝑖
 ∏ 𝑚𝑎𝑥𝑝𝑗∈ 𝑏𝑖

(𝑣𝑇  𝑥𝑗) − 𝑚𝑖𝑛 𝑝𝑗∈ 𝑏𝑖
(𝑣𝑇  𝑥𝑗)𝑣 ∈{𝑣𝑖

𝑙 𝑣𝑖
𝑤 𝑣𝑖

ℎ}                                                                              (B-1) 
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The above algorithm returns the merged bounding boxes and their confidence score. 
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