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Abstract -The concept of six degrees of separation stands as a significant phenomenon, positing that any two independent entities 

worldwide can connect through a chain of no more than six acquaintances. This article delves into the study of this phenomenon 

across various network models, aiming to quantify the rates of information propagation, idea dissemination, disease transmission, 

and predictive trends in society and economics. We extend the examination beyond the conventional notion of "six degrees of 

separation" by investigating the factors impacting degrees of separation and Milgram's condition in complex networks. Our objective 

is to elucidate that the actual degree of separation within a network is intricately tied to its structure and various parameters. Instead 

of being a universal rule, this concept can be construed as a condition that networks must satisfy. We explore Milgram's condition in 

diverse network models, encompassing random, small-world, and scale-free networks, while scrutinizing the impact of the frequency 

and length of cycles on degrees of separation. We introduce a novel criterion, termed multiplicity within the network and assess its 

relationship with the Hamming distance. We evaluate the effectiveness of Milgram's condition and degrees of separation in the 

context of these two parameters. Our findings underscore the close association between Milgram's condition and degrees of 

separation with the specific network model and its structure.  

 

Keywords: Milgram’s Condition, Six Degrees of Separation, Small-Worldness, Hamming Distance, Network Multiplicity, Complex 

Networks, Graph Theory 

1. Introduction 

Complex networks have emerged as a fascinating and rapidly growing field of research, garnering considerable attention in recent 

years across various academic domains, including physics, mathematics, computer science, biology, and social science. These 

networks constitute an assembly of interconnected elements, such as nodes or agents, capable of representing an extensive array of 

real-world systems, encompassing social networks, transportation systems, biological structures, and technological infrastructures. 

The study of complex networks holds profound significance due to its potential to furnish a robust framework for comprehending 

the behavior, structure, and dynamics inherent in these multifaceted systems. 

 Complex networks offer a potent avenue for modeling and analyzing a diverse spectrum of phenomena, including the spread 

of diseases, the emergence of social communities, the intricate architecture of the Internet, the intricate workings of the human brain, 

and more. Additionally, delving into complex networks has yielded the development of novel mathematical and computational tools, 

including network analysis, graph theory, and statistical physics. These tools serve as invaluable instruments for gleaning profound 

insights into the structures and dynamics of intricate systems, while concurrently paving the way for innovative applications across 

diverse domains such as medicine, economics, and engineering. 

 The concept of "six degrees of separation" stands as a significant phenomenon, positing that any two independent entities 

worldwide can be connected through a chain of six or fewer acquaintances. This notion was first introduced by Hungarian writer 
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Frigyes Karinthy [1] in 1929 and gained prominence in the 1960s through the pioneering experiments conducted by Stanley Milgram 

[2]. Milgram's experiments involved randomly selecting individuals and tasking them with sending a letter to a target person residing 

in a different region of the country, solely relying on the chain of intermediate acquaintances for delivery. Although Milgram's 

experiments demonstrated that the average number of intermediate acquaintances is small, typically around six, the validity of the 

concept of six degrees of separation has faced scrutiny in subsequent years. Some rigorous critics have contended that these 

experiments may suffer from sampling biases, casting doubt on the generalizability of their findings to larger populations. However, 

the resurgence of interest in the study of complex networks has reignited the investigation into the phenomenon of six degrees of 

separation and Milgram's condition.   

The Small-World model, introduced by Watts and Strogatz in 1998 [3], stands as another prominent example within the 

realm of complex networks. This model finds its foundation in the remarkable interplay of high clustering and short distances between 

nodes. Recent research has unveiled that the concept of six degrees of separation is not limited solely to small-world networks; it can 

be expansively applied to other models as well, notably scale-free networks, characterized by their power-law distribution of node 

degrees. Examining the problem of degrees of separation and Milgram's condition across different network models holds paramount 

importance on several fronts. First, it serves as a beacon, illuminating the robustness and performance dynamics of real-world 

communication networks. Second, it lays the groundwork for devising efficient routing strategies and optimal search algorithms, 

facilitating seamless information propagation within complex networks. Lastly, this multifaceted exploration augments our 

understanding, offering deeper insights into the fundamental principles that govern the emergence and evolution of complex 

networks. 

Further, this investigation holds the potential to elucidate the pace at which information, ideas, and diseases spread, along 

with its implications for societal and economic trends. To illustrate, comprehending the degrees of separation between individuals 

facilitates the identification of pivotal figures or influencers within social networks. These individuals possess the capacity to rapidly 

disseminate ideas or products to a vast audience. Similarly, a study of degrees of separation between cities or distinct regions can 

unveil critical hubs and bottlenecks, offering valuable insights for optimizing transportation and resource allocation. In 

communication networks, a nuanced understanding of this aspect between different nodes lays the foundation for enhancing 

information routing algorithms and augmenting network performance. 

Notably, within the realm of online social networks, this exploration has catalyzed advancements in the design and 

implementation of information exchange and recommendation algorithms, enhancing user experience and engagement. In 

summation, the investigation into degrees of separation and Milgram's condition within complex networks holds the promise of 

providing profound insights into network structure and performance. Its diverse and pragmatic applications span fields as varied as 

social networking, transportation, and communication, underscoring its significance in contemporary engineering and beyond. 

Within this study, our objective is to demonstrate a significant correlation between Milgram's condition and the actual value 

of degrees of separation within a network, considering the network's structure and various influencing factors and parameters. We 

seek to emphasize that this value may not consistently align with the classical notion of six degrees of separation. Instead, it should 

be perceived as a conditional threshold within a network, subject to the network's unique characteristics. 

In this manuscript, we delve into the exploration of Milgram's condition across diverse network models, encompassing 

random, small-world, and scale-free architectures. Our investigation delves into the impact of cycles with varying lengths and 

frequencies on degrees of separation while scrutinizing their relationships with network statistics. Further, we delve into the effect 

of the possibility of rewiring within the small-world network model on both Milgram's condition and degrees of separation. We also 

introduce a novel criterion named "frequency" and examine its relationship with this phenomenon through discussions of the 

Hamming distance. 

The manuscript is structured into six sections to facilitate a coherent presentation of our findings. Section 2 provides a 

succinct overview of essential definitions and background information necessary to comprehend subsequent sections. In Section 3, 

we offer a brief review of related work in the field. Section 4 presents an in-depth exploration of the degrees of separation problem 

and Milgram's condition. In Section 5, we present numerical results stemming from simulation experiments. Finally, in Section 6, 

we conclude our findings and offer insights into potential future research directions. 

2. Preliminaries, Definitions, and Background 

In this section, we lay the foundation by introducing essential definitions and background information crucial for comprehending the 

entire article. We commence with the elucidation of key concepts, starting with graphs and networks. A graph is a fundamental 

mathematical construct comprising a set of nodes and a set of edges connecting these nodes. For the purposes of this article, the 

terms graph and network are used interchangeably. Degree distribution emerges as another pivotal property, characterizing the 

frequency of nodes possessing a specific number of edges. A network is classified as scale-free when its degree distribution conforms 

to the power-law regime. In essence, this signifies that the probability of a node having k edges is directly proportional to k g-
. The 

nomenclature scale-free arises from the observation that, formally, a function such as f(x) (in this context, representing the probability 

of a randomly chosen node having a degree of k) is deemed scale-free when it exhibits the property ( ) ( ). ( )f bx c b f x= . Here, b 
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represents a coefficient, and C(b) is a constant contingent upon b. The core tenet of scale-free networks lies in the invariance of the 

general form of the function f, even when multiplying a coefficient like b by the variable x. 

 Additionally, a crucial statistic characterizing networks is the clustering coefficient. It measures the degree and strength 

with which nodes tend to congregate into clusters and communities. This metric is often expressed as a percentage, indicating the 

extent to which a node's neighbors are also mutually connected. Milgram's experiment [2] on the small-world phenomenon revealed 

a compelling observation - the average distance between any two individuals within the same country is approximately six. This 

finding has since permeated popular culture as the concept of six degrees of separation. However, subsequent research unveiled 

significant variations in the degree of separation across different network models, contingent upon the network's structural attributes 

and the choice of path-finding algorithms. 

 The Watts-Strogatz model [3] stands as a prominent example of a well-known small-world model designed to encapsulate 

the small-world phenomenon. This model commences with a regular grid and subsequently introduces random rewiring, denoted by 

a parameter , affecting a fraction of the edges. The Watts-Strogatz model effectively manifests the small-world effect, characterized 

by an exceptionally short average distance between two nodes, while concurrently maintaining a high clustering coefficient. 

 Another influential model, the Barabási-Albert model [4-6], is renowned for generating scale-free networks. This model 

gives rise to a degree distribution among nodes that adheres to the power-law regime, indicating the coexistence of a limited number 

of highly connected nodes, often referred to as hubs, alongside a multitude of sparsely connected nodes. In contrast, the Erdős-Rényi 

model [7] represents a classical approach employed for the generation of random graphs. In this model, nodes exhibit a Poisson 

degree distribution. 

 In the subsequent section, we delve into an examination of the influence of network statistics on both degrees of separation 

and Milgram's condition. 

3. Related Work 

In 1967, Stanley Milgram conducted his iconic experiment to investigate the social phenomenon known as "six degrees of 

separation". His model posited that any two individuals worldwide could be connected through a chain of acquaintances comprising 

no more than six intermediate people. While the validity of the six degrees of separation hypothesis has faced significant scrutiny 

and criticism in recent years, the core idea remains a captivating concept that continues to inspire numerous researchers in the field 

of network science. For instance, in Facebook's 2016 experiment [8, 9], an approximate median value of 100 was calculated for the 

distribution. This implies that nearly 50% of Facebook users have approximately 100 acquaintances or friends. It is worth noting that 

this number may appear somewhat imprecise due to distribution skewness. In a 2011 experiment, Facebook reported this number to 

be approximately 190, and the average degrees of separation on Facebook were documented as 4.74 [9, 10]. Subsequently, in 2016 

measurements when Facebook boasted 171 billion members [8-10], this number decreased to 3.75. 

 The concept of the small-world phenomenon was initially introduced by Watts and Strogatz [3], receiving considerable 

attention within the scientific community. They put forth a straightforward mathematical model capable of generating networks 

characterized by both a low average distance and high clustering coefficients. Subsequent to their pioneering work, a multitude of 

studies have been undertaken to explore the properties of small-world networks and their implications across various domains, 

encompassing social networks, communication networks, biological systems, and more. 

 Neumann [11] also presented a model of the small-world phenomenon, which serves as a modified rendition of the Watts-

Strogatz model. In Neumann's model, edges are not rewired; instead, new edges are introduced to ensure network connectivity. In 

essence, pairs of nodes are randomly chosen, and shortcut edges are incorporated between them. It has demonstrated that the average 

distance or separation between nodes (referred to as the q-degree of separation) can be calculated using the following relationship 

[11] 
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where the function F, for small values of the rewiring probability , can be expressed using the following e [11]: 
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Many studies have delved into the intricate interplay between Milgram's condition and various properties of network models. For 

instance, some investigations have scrutinized the pivotal role of weak ties and bridging nodes in facilitating communication across 

disparate segments of a network [3, 6, 11]. Additionally, other research endeavors have focused on unraveling the influence of 

clustering coefficients, scaling exponents, and rewiring probabilities on the small-world phenomenon. However, substantial 

uncharted territory remains, awaiting exploration. One such unexplored realm centers on the role of cycles, their length, and 
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frequency in shaping Milgram's condition and the degrees of separation within networks. Moreover, factors like the multiplicity 

criterion and the Hamming distance, which have not received thorough examination in the context of Milgram's condition and degrees 

of separation, will be meticulously explored. Consequently, the current study endeavors to investigate these dimensions 

comprehensively, aiming to yield deeper insights into the intricate relationship intertwining network statistics, Milgram's condition, 

and degrees of separation. 

 In light of these uncharted avenues, this present study embarks on a quest to explore these facets comprehensively, aiming 

to offer profound insights into the intricate relationship that binds network statistics, Milgram's condition, and degrees of separation. 

4. Milgram’s Condition and q-degree of Separation 

We previously discussed the concept of six degrees of separation or the small-world phenomenon, which implies that regardless of 

a person's location in the world, they can establish a path with a maximum length of six connections to reach any of their friends. In 

simpler terms, even an individual with a modest number of acquaintances can establish a connection with someone on the opposite 

side of the globe. In the context of a random network, the average degree denoted as <k> signifies that a node within the network 

can directly reach <k> other nodes in one hop, <k>(<k>−1) nodes in two hops, and eventually engage in message and information 

exchange with 
1

( 1)
q

k k
-

< > < > - other nodes in q hops. Nevertheless, it is important to note that the number of nodes within a 

network at a distance of q hops, denoted as N(q), cannot exceed the total number of network nodes, N, since N(q) cannot exceed N. 

This implies that distances within the network cannot assume arbitrary values. In other words, 1
( 1)

q
N k k

-
< > < > -; . 

Consequently, when calculating the number of nodes located at a distance of q hops from the origin node, based on the principles of 

geometric progression, we arrive at the relationship 1
( ) ( 1) / ( 1)

q
N q k k

+
< > - < > -; . If we consider qmax as the representation of 

the network's diameter, then for 1k ? , max

max
( )

q
N q k N< >; ; ; hence, the diameter of a random network approximately equates to 

ln / lnN k< >  [6]. This criterion can serve as a basis for comparing different network models, although more refined 

approximations will be introduced in Section 5. 

 All of this underscores the idea that the network diameter encompasses a small number of paths spanning a considerably 

large distance. In random networks, these distances tend to be significantly smaller than the overall network size, such that ln N N=

. In the small-world phenomenon, the diameter of the network does not hinge on its size or its powers but is instead reliant on the 

natural logarithm of the network's size. It is evident that as a network becomes denser, the average distance within it diminishes. 

 Milgram's condition posits that if a person has k acquaintances, then the number of her/his friends and indirect acquaintances 

can be approximated as 

(3) 1 1

0
( 1) ( 1) / ( 1)

q i q q

i
N k k k k k k
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In this equation, the parameter q signifies the distance or separation number, denoting the number of steps one must traverse to 

transmit messages and information to kq other individuals via intermediary acquaintances. It is important to note that, in Milgram's 

experiment, this condition necessitated that participants were solely permitted to convey messages to individuals they personally 

knew—be it a friend, family member, or any other close acquaintance. These were individuals deemed to have a meaningful 

relationship with the target person [3, 6, 11]. Participants were instructed to persist in this process of message transmission throughout 

their social network until the message ultimately reached the target person. Milgram's findings revealed that, on average, the number 

of intermediate acquaintances involved in this process was approximately 6, giving rise to the renowned concept of "six degrees of 

separation." Notably, Milgram's condition did not explicitly establish a direct correlation between the size of one's social network 

and the degree of separation between individuals. However, his small-world experiment suggested that even within a large 

population, there exists a relatively small number of intermediate acquaintances (degrees of separation), typically estimated to be 

around 6, connecting any two individuals. 

It is worth noting that the network of friends and acquaintances, in practical terms, often resembles a tree structure and lacks 

cycles. Besides, it may not necessarily exhibit a high clustering coefficient. Additionally, it is important to recognize that 

acquaintance and friendship typically entail a symmetrical relationship. However, in real-world networks, we encounter structures 

with cycles and notably high clustering coefficients. Due to the presence of clustering and cyclic structures, particularly those with 

a length of three or more, the effective size of the community of individuals (denoted as N) often fails to reach an extensive value. 

Consequently, the degrees of separation within such networks tend to be less than 6. Hence, the primary objective of this article is to 

delve into the intricate relationships between degrees of separation, clustering coefficients, and various other statistical metrics and 

parameters of the network. Equation (3) hints at the existence of a power-law relationship between an individual's community size 

(N) and the degrees of separation (q). This suggests that the size of an individual's community network is proportionate to the number 

of acquaintances they possess raised to the power of the degree of separation. 



May 2024, Volume 2, Issue 1 

141 

However, it is important to acknowledge that the size of an individual's social network and the degrees of separation among 

individuals within a society can be intertwined in complex ways. Generalizations regarding this relationship can be challenging 

without considering the specific context and societal nuances under investigation. Moreover, numerous factors such as geographical, 

cultural, and technological considerations exert influence on the structure and integration of social networks, adding layers of 

complexity to this relationship. 

4.1 The Impact of Various Network Statistics on Milgram's Condition and the Degrees of Separation 

In this section, we embark on an in-depth exploration of the challenges posed by degrees of separation and Milgram's condition 

within various models of complex networks. Our investigation spans multiple dimensions and criteria to provide a comprehensive 

understanding. We delve into the intricate relationships between degrees of separation and several network statistics, including 

average clustering coefficient, generalized clustering coefficient for Cycles of varying lengths. We scrutinize the role and impact of 

cycles in the network, particularly those with different lengths, on the small-world phenomenon and degrees of network separation. 

This entails investigating whether the frequency of cycles and specific patterns, along with their respective lengths, significantly 

influence the small-world effect and degrees of separation. Moreover, we assess the issue of information propagation rate and its 

correlation with degrees of separation, taking into account the impact of different network topologies on this phenomenon. 

 At the outset of this section, we address a fundamental question; what is the impact of cycles and motifs of varying lengths 

on the small-world phenomenon and the degrees of network separation. This inquiry probes whether the frequency of cycles and 

specific patterns, along with their lengths, substantially affect the small-world effect and degrees of separation within the network. 

Notably, the relationship between degrees of separation and the clustering coefficient in a complex network is not static but varies 

based on network characteristics. Networks characterized by high clustering coefficients tend to exhibit shorter paths and, 

consequently, lower degrees of separation. Conversely, networks with lower clustering coefficients may experience a higher degree 

of separation. The clustering coefficient measures the tendency of nodes in the network to form clusters and groups. A higher 

clustering coefficient signifies that nodes are more likely to share mutual neighbors, facilitating efficient information transfer through 

local connections and clusters. This, in turn, leads to shorter path lengths and a reduction in degrees of separation. 

The speed of information propagation within a network is influenced by a multitude of factors, including degrees of 

separation, network size, average degree, clustering coefficient, network heterogeneity, and more. The rate of information 

propagation within a network can be roughly approximated by the equation R = N / T, where N represents the network size, and T 

stands for the average time required for information to traverse between two nodes. The time needed for a message to reach another 

node is contingent on the number of links it traverses. If a node maintains an average of <k> links, it can simultaneously transmit 

messages to <k> other nodes. Consequently, the time taken for a message to reach neighboring nodes is inversely proportional to 

1/<k>. Thus, the parameter T is proportionate to 1 / λ, where λ represents the rate at which a node can establish contacts per unit of 

time. In the context of q-degree of separation, this rate can be expressed as ( )1 /
q

ktl < >= , where  denotes the average time 

needed to establish a contact. Typically,  is assumed to be equal to unity for a unit-length walk. Therefore, the speed (rate) of 

information propagation, R, can be expressed in terms of the q-degree of separation within a network of size N, with an approximate 

formula /
q

R N k= < > . 

It is important to note that network performance evaluation encompasses three primary categories of criteria. (1) Local 

structure criteria: This category includes criteria related to the local structures around nodes. Examples of such criteria comprise 

average degree, edge density, degree heterogeneity, clustering coefficients, modularity index, average geodesic distance, and average 

node betweenness. (2) Walk-based criteria: In contrast to the first category, these criteria consider information transmission not only 

through short paths but also through any accessible path connecting corresponding pairs of nodes. These criteria rely on the concept 

of walks rather than paths. Examples within this category encompass eigenvector centrality, subgraph centrality, and average 

communicability. (3) All-walks index criteria: This third group of criteria is founded on the all-walks index, which assigns less 

weight to longer walks between node pairs. Typically, criteria in the second category account for all routes connecting nodes but 

penalize relatively lengthy routes. To incorporate longer walks into the analysis, Estrada [12, 13] proposed a measure 

0
/ !!

q
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¥

=å@ for the adjacency matrix A. In this measure, walks of length q are penalized by q!! (double factorial). The Z matrix, 

derived from the underlying graph, computes the average of elements situated on the main diameter (i.e., 
1
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n
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This contribution of a node like i to all subgraphs of the graph includes larger subgraphs compared to the subgraph centrality criterion. 

Moreover, one can average all elements of the Z matrix, considering 
,

2

( 1)
ij iji j

Z Z
n n

< > =
-

å  as a measure of the network's global 

capacity to transmit information between pairs of nodes. Consequently, this enables information transmission over longer distances.  

In our experimental outcomes (detailed in Section 5), our observations indicate that the Z-Estrada index [12], compared to 

the R-index (representing information propagation rate), more effectively quantifies the level of communicability and the network's 

aptitude for information propagation—a pivotal characteristic of the small-world phenomenon. 
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Several network characteristics play a pivotal role in influencing both Milgram's condition and the degrees of separation 

within the network. For instance, denser networks characterized by a multitude of connections between nodes tend to exhibit shorter 

paths and reduced degrees of separation. Conversely, networks with skewed and heterogeneous degree distributions may result in 

longer paths and higher degrees of separation. These scenarios will undergo thorough investigation and analysis in our simulation 

experiments. 

In the remainder of the article, in our quest to provide a quantitative assessment of the small-world phenomenon and 

Milgram's experiment, it becomes essential to precisely define Milgram's condition and the degrees of separation within the network. 

To achieve this, we must engage in manipulation of the adjacency matrix of the graph, which contains crucial information pertaining 

to its structural makeup. In pursuit of this objective, we introduce the Rp matrix, derived from the adjacency matrix of the graph, 

denoted as A. This matrix is defined as [14] 

(4) 0
0 1,1    ,

1 1           
1

, , ,
~

[ ] (1 )
p k l k j

k p l p i ik jp k l
i ik j

p
p

i i i i i i
i i

R a d
£ £ - £ £

- ¹
- >

= -å Õ Õ 

In the equation above, Rp represents a matrix, where each entry (i, j) signifies the count of disjoint and acyclic paths of length p from 

the starting node i to the ending node j. The term within the sigma summation operator calculates the number of such paths. To form 

a path of length p, it is necessary to have (p−1) nodes located between the source and destination. Consequently, the sigma summation 

traverses all possible combinations of nodes, considering (p−1) nodes. 

Within the sigma expression, there is expression
0 1 1 2 1

0 1,1
          

, , , ,
k l p p

k p l p
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a a a a
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a  signifies the entry located at 

index (i, j) in the adjacency matrix, A, of the graph. If its value equals one, it indicates the presence of an edge between node i and j. 

In this context, if all 
0 1 1 2 1
, , ,

p p
i i i i i i

a a a
-

K values equal one, it implies the existence of a path from the starting node i0 to the end node ip, 

traversing nodes i0, i2,…, ip, respectively. 

Now, to ensure the absence of cycles in a path of length p, it is essential to verify that none of the edges along i0, i2,…, ip 

are repeated. For this purpose, the condition 
   ,

1

,
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-Õ  is employed, wherein the 
,
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d expression implies Kronecker's delta. 

Kronecker's delta assigns a value of 1 when ik equals ij, and it equals 0 in all other cases. Consequently, the 
   ,
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checks that each k and j index in i0, i2,…, ip is unique, ensuring that no nodes are repeated. Additionally, the condition 1
k j

i i- >  

stipulates that k and j must be distinct from each other; as  ii  =  ik  , would signify the repetition of a node in traversing a path of length 

p. In such cases, 
,

1 0
k j
i i

d- = , and when multiplied by the remaining expression, the total value within the sigma summation 

becomes zero. In essence, this means that the desired path is excluded from the calculation of Rp. 

 Safaei and his coauthors [15] have presented a relationship that expresses graph energy [16] based on the largest eigenvalue 

of its adjacency matrix, often referred to as the spectral radius. Their proposed expansion relies on the even powers of the adjacency 

matrix. They have demonstrated that the powers p of the trace of the adjacency matrix, denoted as tr pA , can be employed to compute 

the number of closed walks of length p—where p can be either even or odd. These closed walks correspond to specific subgraphs 

within the graph structure. To illustrate, 
2t rA  calculates the number of closed walks of length 2, which corresponds to graph edges, 

while 
4t rA  yields closed walks of length 4, encompassing cycles of length 4. As the powers increase, additional subgraphs emerge. 

For instance, the cycle C8 first appears in 
8t rA . Consequently, a key aspect we will delve into further is the influence of the quantity 

and frequency of subgraphs and cycles in various network models on Milgram's condition and the degrees of separation. This is 

crucial due to the substantial impact of cycles, graphlets, motifs, and closed walks on network properties such as average distance, 

spectral values, heterogeneity, information propagation rate, and, in essence, any factor linked to network degrees of separation. 

 By calculating the matrix Rp using Equation (4), and aligning with the concept of powers p from the trace of the adjacency 

matrix, as previously discussed, we can define the pth clustering coefficient within the network as [14] 
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In the equation above, the numerator of the fraction signifies the number of cycles of length p—starting from the initial 

node and returning to itself after traversing p hops (edges). However, in the denominator of the fraction, we calculate the number of 

connected p-plets within the entire graph. In cases where these p-plets are not interconnected, only (p−1) hops (edges) are taken into 

account. The inclusion of the sigma summation in the denominator of the fraction entails a summation over all elements of the Rp-1  
matrix or the total number of (p−1) nodes connected to each other. It is worth noting that this division normalizes the generalized 

clustering coefficient parameter in the graph to fall within the interval [0,1]. 

Consequently, the pth generalized average clustering coefficient within a network can be expressed as 

(6) 
p

p

p

p C
C

S

×
= 

Where p represents the length of the cycle, Cp denotes the number of cycles comprising p edges, and Sp indicates the quantity of 

connected p-plets in the underlying network. This parameter is defined for the square adjacency matrix, A, with N2 elements, derived 

from the summation over all elements of the matrix R matrix raised to the power of (p−1), given by 
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As previously mentioned, Sp in Equation (6) represents the number of walks of length p (comprising (p−1) nodes). These walks 

encompass connected p-plets, which may either be closed (forming a cycle) or open (constituting a path graph). Importantly, these 

walks are non-repetitive, meaning they lack cycles and multiple links. Additionally, there are no closed walks within them. In other 

words, they may be closed, signifying that the starting and ending nodes are connected, but they do not contain any closed circuits 

or loops. 

It is worth noting that the coefficient "1/2" in Equation (7) is employed to avoid double counting since walks of length p 

can be calculated from both directions, both of which are essentially the same, representing a single unique walk. 

The clustering coefficient parameter
p

C in Equation (6) serves as a metric for assessing the tendency of network nodes to 

form p-cliques or cycles of length p. The relationship between
p

C and the degrees of separation is the focal point of our investigation. 

However, it is essential to acknowledge that this relationship depends on a multitude of factors, including network size, structure, 

node degree distribution, the value of p, and more. Generally, higher values of 
p

C indicate a greater tendency for the network to 

possess shorter paths and lower degrees of separation. Consequently, the flow of information traversing the network can move 

through local clusters and cycles more swiftly and efficiently. 

To enumerate the number of connected p-plets (the sets comprising p connected nodes), we must tally such sets within the 

network. It is important to note that this calculation exhibits high computational complexity, particularly for larger network sizes. 

Hence, techniques like Monte-Carlo simulations or sampling can be employed to estimate the quantity of such connected p-plets 

[16]. 

 Clearly, when p is set to 3 in Equation (6), we arrive at the well-known Watts-Strogatz clustering coefficient [3]. In essence, 

Equation (6) represents a further development and generalization of this coefficient. Therefore, in this article, it is referred to as the 

generalized clustering coefficient. It is worth mentioning that the Watts-Strogatz clustering coefficient, expressed in terms of the 

trace of the power of 3 of the network adjacency matrix (signifying the number of triangles), can be articulated as 

(8) 
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where aij corresponds to the entry in the ith row and jth column of the adjacency matrix A. Additionally, the Watts-Strogatz clustering 

coefficient can be expressed as follows, incorporating the rewiring probability  (which involves swapping edges in the network) 

and the network's average degree 

 (9) 3
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The above equation can be interpreted as follows. The first part implies the clustering coefficient in a regular lattice, which is 

approximately 75% for high degrees. To interpret the second part of this equation, it should be noted that the probability that a 

connected triple will remain connected after rewiring is equal to the probability that none of these three edges will be rewired. This 

probability is equal to (1−)3. Consequently, it is multiplied by the clustering coefficient of the regular lattice. It is worth mentioning 

that the probability of rewiring the edges to form a connected triplet is very small and can therefore be neglected. 
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The frequency of cycles and their occurrence in small-world networks can also be related to the concept of degrees of 

separation. Cycles have varying lengths and can emerge due to high clustering in small-world networks, thus facilitating the 

propagation of information and enhancing communication efficiency between nodes. Cycles can give rise to motifs and graphlets, 

which recur in different parts of the network. When nodes are connected through short cycles, information exchange becomes swift 

and efficient. This reduces the number of steps required to exchange messages between nodes and consequently diminishes the 

degree of network separation. Therefore, the investigation of cycles, motifs, and graphlets in various small-world network models 

can yield valuable insights into information dissemination and the factors influencing degrees of separation. 

It is also important to note that the length of cycles or closed walks in networks plays a significant role in Milgram's condition 

and network degrees of separation. As the length of cycles increases, the likelihood of encountering longer and more convoluted 

paths also increases, resulting in reduced efficiency of information propagation and a weakening of the network separation effect. 

Consequently, it appears that the small-world phenomenon and the issue of network degrees of separation primarily apply to cycles 

or closed walks with relatively short lengths (e.g., 6 or 7), with this effect diminishing for longer cycles. 

Now, in a network of size N, Milgram's condition with q-degree of separation, denoted by the symbol Mq throughout this 

article, can be defined as [17] 

(10) 
1

q q
M S

N
@ 

In the above relationship, Sq is the parameter calculated in Equation (7). Dividing by N signifies averaging over it, which is employed 

as Milgram's condition in this article. Essentially, it corresponds to the average number of walks of length q, interpreted as the q-

degree of separation within the underlying network. Another interpretation can be framed as how probable it is for two randomly 

chosen nodes in the network to reach each other in at least q steps, or the minimum distance between them is q. It is essential to 

emphasize that the q-degree of separation criterion encompasses more than just the average number of q-plets in the network; it 

fundamentally signifies the likelihood of finding a path of length q between any two arbitrarily selected nodes within the network. 

The higher the numerical value of Milgram's condition, the greater the likelihood that two selected nodes can be connected via a path 

of length q, consequently reducing the degree of network separation. 

 An alternative interpretation of Milgram's condition pertains to the concept of network efficiency, specifically the extent 

and effectiveness of information transfer within the network. Remarkably, even when nodes appear to be distant from each other, 

the presence of walks, cycles, and their frequency enhances this possibility and the overall efficiency of the network. This, in turn, 

leads to rapid information transmission between nodes, a crucial and vital feature observed in numerous real-world networks such 

as viral transmission, biological networks, transportation, and communication. 

Another intriguing observation to highlight is that by taking the logarithm of Milgram's condition in Equation (10), we can 

define a figure of merit (FoM) that quantifies the quality of communication within a network based on Milgram's condition. The use 

of log( / )
q

M N  form provides us with deeper insights into the characteristics of the underlying network. If this value equals 1, it 

signifies a critical situation for Milgram's condition. In other words, the number of nodes meeting at a q-degree of separation is 

several times greater than the network total size, N. This is a significant point, indicating that the number of nodes converging at q-

degree of separation is of the same order of magnitude as the total network nodes (N), illustrating that a highly interconnected network 

facilitates efficient information transmission. Another interpretation suggests that this point marks the juncture where the search 

process in Milgram's experiment extends across the entire network, effectively scanning the network and increasing the likelihood 

of locating a target node. Therefore, this point can be viewed as a saturation threshold within the network, beyond which further 

exploration beyond q degrees of separation yields diminishing returns in terms of discovering new nodes in the network. In simpler 

terms, beyond the saturation point, the probability of locating the target node through random searches significantly decreases. This 

boundary condition serves as a crucial threshold in Milgram's condition, providing a basis for assessing the effectiveness of 

algorithms and search strategies. This aspect will be thoroughly examined in the numerical results obtained from simulation 

experiments (see Section 5). 

In this context, taking the logarithm of Milgram's condition, denoted as log( / ) 1
q

M N = , offers us a network merit criterion, 

shedding light on how information can propagate within q steps (degrees of separation) relative to the network size. Additionally, 

the median of the CDF signifies the average degree at which 50% of nodes (individuals) possess, on average, q acquaintances. When 

log( / )
q

M N  equals 0.5, it indicates that the probability of two nodes connecting to each other and exchanging information and 

messages through the intermediary q acquaintances (degree of separation) is higher than 50%, almost approaching half the value of 

the boundary condition (saturation point) observed in the Milgram experiment. 

In this article, we introduce a stochastic variable known as Xq, which corresponds to the q-degree of network separation. 

The definition of this random variable is expressed as a summation of the pth generalized clustering coefficients, as follows 
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The interpretation of the stochastic variable Xq may signify the impact of cyclic structures with length p and (3pq) within the 

underlying network. It is evident that cycles with lengths of 1 and 2 (p3) are absent. Hence, Equation (10) provides valuable insights 

into the structures formed by p edges in the network. By analyzing the random variable Xq for various q values, we can collect 

information about the frequency distribution of cycles with diverse lengths in the network and understand how these cycles contribute 

to its connectivity and communication. This matter, among others, will be extensively discussed in the simulation section. 

5. Numerical Results 

In this section, our objective is to leverage numerical results obtained from simulations to explore the phenomenon of degrees of 

separation and Milgram's condition across various complex network models, encompassing random, small-world, and scale-free 

networks. Our goal is to evaluate network performance and conduct an in-depth analysis of these aspects. 

 Figure 1 presents probability density function (PDF) and cumulative distribution function (CDF) depicting network distance 

distributions across different network models including random, small-world, and scale-free networks. These models are defined by 

specific parameters; the connection probability of 0.4 for the random model, a scaling exponent, =2.5 for the scale-free model, and 

the rewiring probability, =0.3 for the small-world model. The network size remains constant at 100 nodes . 

In the random network (Erdős–Rényi model [7]), the PDF exhibits a prominent peak at the average distance and 

subsequently experiences an exponential decline as distances diverge from the mean. Analysis of the CDF reveals that roughly 50% 

of network nodes maintain connections at this average distance .  For the Small-world network, characterized by a rewiring probability 

of 0.3, the PDF showcases a pronounced peak at the minimum distance, followed by a rapid decrease with increasing distance. The 

thinner tail of the distribution signifies the presence of long-range connections, conforming to a power-law pattern . 

  

Figure 1: The Probability Density Function (PDF) and Cumulative Distribution Function (CDF) of distances in different network models including a random model 

network with a probability of connection set to 0.4, a scale-free model with a scaling index, , of 2.5, and a small-world model with a rewiring probability, , of 0.3. 
The network size in this simulation is fixed at 100 nodes. 

In the scale-free network, featuring a scaling exponent of 2.5, the PDF follows a power-law distribution. The lower rate of decay 

compared to the small-world model results from the presence of sizable hubs and clusters containing highly connected nodes, thereby 

facilitating efficient communication throughout the network. It is noteworthy that the Barabási-Albert model [3-6], a specific scale-

free variant, exhibits a distance distribution with its peak at the maximum distance (dmax), and a heavy tail indicating the prevalence 

of hubs and long-range connections. 

 These observations underscore the critical role of diverse network statistics, including average degree, rewiring probability, 

growth rules, preferential attachment [6], and scaling exponents. Such analyses emphasize the need to consider multiple criteria to 

gain a comprehensive understanding of network separation degrees and Milgram's condition. Additionally, these insights extend 

beyond the specific parameter values discussed here, offering generalizable findings applicable to various scenarios. 
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Figure 2: The linear relationship between Milgram's condition and the stochastic variable Xq (the sum of generalized clustering coefficient values) within the small-
world network model. Both the horizontal and vertical axes are plotted logarithmically; (a) Milgram's condition is analyzed concerning network size, ranging from 

10 to 200 nodes, with a fixed rewiring probability =0.3. The data points are derived from 30 networks; (b) Milgram's condition is evaluated while keeping the 

network size fixed at 100 nodes, and the rewiring probability  is varied within the range [0.001, 0.5]. Thirty networks are considered for this analysis. 

 

            

(b) (a) 

Figure 3: The exponential relationship between Milgram's condition and the random variable Xq (the sum of generalized clustering coefficient values) within the 
scale-free network model. The vertical axis is in natural logarithm. Two scenarios are presented; (a) Milgram's condition is examined concerning changes in network 

size, ranging from 10 to 130 nodes, with a fixed scaling exponent = 2.5. Data points are generated from 30 networks; (b) Milgram's condition is assessed while 

maintaining a fixed network size of 100 nodes and varying the scaling exponent,   [0.1, 10]. Again, 30 networks are considered for this analysis.  

 

In Figure 2, Milgram's condition is presented in relation to the Xp random variable within the Watts-Strogatz small-world model [3]. 

The details of the model's specifications are provided in the article. Both axes in the figure are displayed on a logarithmic scale, and 

the data is based on 30 networks. Two specific scenarios are considered. The first subplot, 2(a), showcases Milgram's condition as a 

function of network size, varying from 10 to 200 nodes, while keeping the rewiring probability  constant at 0.3. In the second 

subplot, 2(b), Milgram's condition is depicted concerning changes in rewiring probability , ranging from 0.001 to 0.5, with the 

network size fixed at 100 nodes. 

 In this network model, an interesting observation emerges. As the length of cycles (i.e., degrees of separation) increases 

from 3 to 6, there is a noticeable rise, indicating a linear relationship akin to a power-law phenomenon. This suggests that an increase 

in the contribution of generalized clustering coefficients within the networks corresponds to an increase in the degrees of separation, 

which in turn weakens Milgram's condition. 

 As previously mentioned in Section 4, the line represented by log( / ) 1
q

y M N= =  corresponds to the boundary condition 

or saturation point of Milgram's condition. This boundary condition is met for degrees of separation q4. In essence, in the small-

world network model, Milgram's condition is satisfied within networks characterized by cycles of length 4 to 6. The fulfillment of 

Milgram's condition in small-world network models conforms to a power-law relationship can be described by  

(12) ( )     , 0
q q

M B X Bz z-» > 

where B and  are positive constants. 

 Indeed, as demonstrated by the plots in Figure 2, this relationship is grounded in a power-law framework. When expressed 

in logarithmic form, it exhibits linearity characterized by a positive intercept coefficient and a negative slope. As the length of cycles 

(i.e., degrees of separation) increases, a linear relationship emerges, reflecting the heightened contribution of generalized clustering 

coefficients within the network. Consequently, we can model the topological relationship of the Milgram's condition parameter, Mq, 

in terms of Xq in the small-world model using Equation (12). 

 In contrast, in scale-free networks, the presence of longer cycles and their relative frequency exhibits an exponential 

relationship with Milgram's condition, as articulated by the following equation 

(13)    0q
bX

q
M e b» > 

where b is a positive constant. This observation was further validated through simulations conducted on scale-free networks, as 

illustrated in Figure 2.  

Figure 3(a) displays the variation of Milgram's condition concerning network size, ranging from 10 to 130 nodes, while 

assuming a scaling exponent  of 2.5. In Figure 3(b), Milgram's condition is plotted against changes in the  within the interval [0.1, 
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10], while maintaining a fixed network size of 100 nodes. Each subplots 3(a) and 3(b) is based on thirty networks generated for 

analysis. 

The findings presented in Equations (12) and (13) demonstrate the logical connection between Milgram's condition and the 

topological characteristics of the network. It is important to note that the precise mathematical form of this relationship may vary 

depending on the specific network type and model. Determining the exact form of this relationship necessitates in-depth mathematical 

analysis and empirical evidence. Additionally, the association between Mq and Xq is influenced by the distribution of Xq values across 

the network, which, in turn, is linked to the network's topological attributes. 

In the case of small-world networks characterized by high clustering and short paths, we anticipate that Xq values will exhibit 

a significant skew, meaning that only a few nodes will possess high values. Consequently, in such networks, Milgram's condition is 

expected to exhibit a power-law relationship with Xq. In contrast, in scale-free network models with highly heterogeneous degree 

distributions, an exponential relationship emerges between Mq and Xq, as depicted in Figure 2. This phenomenon arises due to the 

presence of a limited number of highly connected nodes (hubs) which exert a substantial influence on Xq. Consequently, this leads 

to an exponential distribution of values for the random variable Xq, as formulated in Equation (13). 

The relationship between Mq and Xq can be considered as an outcome of Milgram's original experiment, which assesses the 

likelihood of two randomly selected nodes in the network connecting with each other through a path of q hops or fewer. As described 

in Equation (11), Xq represents a stochastic variable that involves a summation of generalized clustering coefficients, reflecting the 

contribution of cycles ranging from length 3 to q. 

Equation (12) illustrates that this summation of cycles, ranging from length 3 to q, between two randomly chosen nodes in 

a small-world network model exhibits a power-law behavior. The probability of encountering such cycles is directly proportional to 

( 1)
p

C p
z-

+ , where Cp denotes the generalized clustering coefficient associated with a specific node. This coefficient signifies the 

proportion of closed cycles with a length of p, centered around that particular node. The parameter  plays a crucial role as a scaling 

factor governing the decay of Cp concerning p. A smaller  implies that longer cycles hold more significance in influencing the 

clustering coefficients. It is important to note that parameter q represents the maximum observable cycle length within the network. 

In this context, the average (expected value) of cycles with a length of q or less between two randomly chosen nodes can 

be computed as  

(14) 
3 ( 1)

q p

q p

C
X N

p z=
=

+
å 

 Hence, the relationship outlined above defines the expected number of nodes attainable through q-degree of separation in small-

world networks. The choice of the  parameter can be tailored to the specific characteristics of the network model, with considerations 

including the degree distribution and clustering level. For instance, in the case of random network models, setting  to zero is 

appropriate, as these models typically lack inherent clustering structures. In summary, Equation (14) offers a methodology to estimate 

the degrees of separation within a network based on its topological and clustering attributes. This approach proves valuable for 

comparing various network models and conducting analyses on real-world networks. 

 Equation (13) and the corresponding plots in Figure 3 illustrate that the relationship observed in scale-free networks differs 

significantly from that in small-world networks. Instead, it exhibits an exponential connection. This discrepancy primarily stems 

from the presence of hubs in scale-free models. In scale-free networks, there tend to be a small number of nodes with exceptionally 

high degrees of connectivity, and these hubs introduce distinct topological characteristics compared to random network models. 

Consequently, the relationship between Milgram's condition and generalized clustering coefficients in the network diverges. 

Hubs, owing to their numerous connections, serve as efficient intermediaries for short paths between network nodes. This 

characteristic reduces the effective diameter of scale-free networks, satisfying Milgram's condition for smaller values of q. However, 

the prevalence of hubs also contributes to larger-than-expected generalized clustering coefficients in these networks. Hubs often 

serve as focal points for the formation of triangles and other cyclic network structures. These elevated clustering coefficients in scale-

free networks give rise to the observed exponential relationship between Milgram's condition and Xq, which is distinct from the 

pattern observed in small-world network models. 

Empirical observations and numerical results within scale-free networks, as depicted in Figure 2, support the conclusion 

that Milgram's condition exhibits an exponential decline as the parameter q increases, and this behavior is accurately captured by 

Equation (13). Notably, the constant coefficient b within this equation signifies the rate of decay and is contingent on the specific 

properties of scale-free networks. 

 Another plausible explanation for this observation is the heightened degree distribution heterogeneity commonly found in 

scale-free networks. As the degrees of separation, q, increase, this skewness in degree distribution rapidly results in a greater number 

of connected q-plets within the network. In essence, larger values of Cp and longer cycles become more prevalent in such networks. 

This phenomenon can pose challenges for information transmission over extended distances. 
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 The exponential form presented in Equation (13) can be rationalized by considering that in scale-free networks, the number 

of nodes with high degrees diminishes exponentially with increasing degree values. Consequently, the number of q-plets interlinked 

through nodes with elevated degrees dwindles exponentially with the parameter q. This reduction in interconnected q-plets 

subsequently leads to an exponential decay in Milgram's condition. Mathematically, this exponential relationship between Milgram's 

condition and q-plets (Xq) can be effectively expressed through Equation (13). 

   

(b) Barabási-Albertt (BA) model network with a scaling exponent,  set 

to 3 
(a) Random network, Erdös–Rényi (ER) model  

  

(d) Watts-Strogats small world network with rewiring probability =0.3 

(c) Scale-free network with a scaling parameter  typically refers to a 

network that follows a power-law degree distribution with a size of 100 

nodes. 

Figure 4: The ratio of generalized clustering coefficients to the average network degree as a function of network size in various network models, including random 
networks (ER), Barabási-Albertt networks, Watts-Strogatz small-world networks, and scale-free networks. Additionally, this ratio is depicted concerning the scaling 

exponent, , in the scale-free network model. The average network degree, denoted as <k>, is assumed to be constant and set to a specific value. 

 

In a random network, the clustering coefficient is related to the ratio of the average degree to the network size. As the network size 

increases while keeping the average degree constant, the local clustering coefficient of nodes decreases. Consequently, the average 

clustering coefficient of the network decreases proportionally to the inverse of the network size. To explore this phenomenon, we 

have created plots depicting the ratio of the average clustering coefficient to the average degree concerning network size across 

various network models, including random network, Erdös–Rényi (ER) model [7], Barabási-Albert model [4-6], Watts-Strogatz 

small-world network [3], and scale-free network [6] with different scaling exponents. When viewed from a logarithmic perspective, 

these plots reveal that the slope of the curves decreases as N−1. In other words, the average generalized clustering coefficient also 

exhibits a diminishing trend with increasing network size. 

In small-world networks, the influence of triangles is notably greater than that of other cycles, even as the network size 

increases. Among the cycles, Cycle C6 has the least impact and contribution. In random networks, cycles generally do not exhibit 

significant differences in their impact or contribution, and their influence is relatively equal. However, in the Barabási-Albert (BA) 

model, the situation is distinct. For small network sizes, the 3-cycle structure (triangles) has a more pronounced effect. Still, as the 

network size surpasses a certain threshold, cycles with a length of 4 (squares) rapidly become more influential. For larger network 

sizes, the contribution of cycles with lengths 3, 5, and 6 becomes more comparable. 

The scaling exponent parameter, , in the BA model is approximately 3, which aligns with the numerical results. This is a 

critical point in the network, as it has been observed that the average distance is proportional to ln(N)/ln(ln(N)). However, when it 

comes to scale-free networks, except for the Barabási-Albert model, the role of  in the degrees of separation phenomenon requires 

further examination. This will be explored in the subsequent experiments. 
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5.1 The Milgram's Condition and Degrees of Separation in Scale-Free Networks   

In the dominion of scale-free networks, many network characteristics are contingent upon the value of the scaling exponent, . This 

parameter exhibits variability across different networks, allowing us to examine how network properties change in response to 

variations in . In most real-world networks,  tends to be greater than 2, making values of  less than 2 unusual. When it is less than 

2, it implies that the number of links connected to the largest hub grows at a faster rate than the network size itself. For larger network 

sizes, this would entail that the size of the hub exceeds the total number of network nodes, which is not meaningful. 

 Another noteworthy observation occurs when  is less than or equal to 2, indicating that the average degree of the network 

diverges as the network size increases. Consequently, the ratio of Cp (clustering coefficient) to the average degree, Cp/<k>, is 

exceedingly small and approaches zero initially. Interestingly, under this unusual regime, the contribution of cycles with a length of 

4 exceeds that of other cycles, while the contribution of triangles is less than all of them. 

 For values of  between 2 and 3, we find the realm of scale-free networks. In this sort, the average distance is proportional 

to lnln(N). However, it is important to note that networks within this range are exceptionally small. Consequently, we observe a 

logical reduction in Cp/<k> because the network behaves similarly to small-world models, where the impact and contribution of 

cycles with a length of 3 (triangles) are more pronounced. 

 Moving beyond a  value of 3, the effect of triangles diminishes once more, and the contribution of cycles becomes more 

closely tied to squares. At  values greater than 3, the network transitions into a random regime. In this scenario, the average distance 

is proportional to ln(N), indicating that the degree distribution diminishes rapidly, and smaller hubs begin to dominate the network. 

In this context, the degree variance in the network is limited, and the average distance aligns with the characteristics of the small-

world model. Although hubs still play a role in constraining distances, they are no longer of sufficient magnitude to significantly 

impact the distance between nodes. 

From the aforementioned statements, it becomes evident that the network's topology exerts a specific influence on Milgram's 

condition and the phenomenon of degrees of separation. Different network models exhibit varying levels of clustering, path length, 

degree distribution, eigenvalue spectra, degree heterogeneity distribution, and other factors, all of which impact the efficiency of the 

degrees of separation phenomenon. 

This is why the investigation of degrees of separation often centers on small-world networks characterized by high clustering 

and an abundance of short paths. However, it is important to note that Milgram's condition can manifest in any complex network 

model. Nevertheless, its precise location and behavior vary from one model to another. In the case of scale-free networks featuring 

hubs, the phenomenon of degrees of separation necessitates a different approach. Hubs may function as bottlenecks, impeding the 

smooth flow of information. In situations involving hub failures or overloads, information may become trapped and fail to 

disseminate to other parts of the network, consequently increasing the degrees of separation between nodes. However, when 

compared to random networks and regular lattices, scale-free networks generally exhibit fewer degrees of separation. Conversely, 

networks with random and homogeneous topologies, which typically possess low clustering, may not facilitate highly efficient 

degrees of separation. The absence of analogous structures and local clustering can impede the efficient propagation of information 

throughout the network. 

 
Figure 5: The contribution of cycles with lengths ranging from 3 to 6 (Xp) in scale-free network models under various values of the  parameter. The network size is 
held constant at 100 nodes. 

 

In the plots presented in Figure 5, we examine the contribution of cycles with various lengths, ranging from 3 to 6, represented as 

the average generalized clustering, within scale-free network models under different values of the  parameter. As previously 

discussed in the explanations related to Figure 3 for scale-free networks, the characteristics of these networks are highly reliant on 

the scaling exponent parameter . When 2, the network enters an anomalous state, where the number of links connected to the 

largest hub grows faster than the network size. In this scenario, it becomes evident that for  less than or equal to 2, cycles with a 

length of 6 exhibit a significantly higher contribution, surpassing 80%. Conversely, triangles have the lowest contribution, amounting 

to roughly 20%. 
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 Within the 2<<3 regime, the network follows a scale-free model, and the average distance is proportional to lnlnN. In this 

setting, the network's behavior resembles that of the small-world model, with cycles of length 3 (triangles) exerting a greater influence 

and contribution. Consequently, within the 2<<3 regime, which corresponds to the scale-free model, the contribution of cycles 

experiences a rapid decline and falls below 40%. 

 At the critical point where  equals 3 (Barabási-Albert model), the contribution of cycles with a length of 6 reaches 

approximately 20%. Nevertheless, as  surpasses 3, this contribution decreases once more. Nevertheless, larger cycles still maintain 

a significant contribution, with triangles contributing the least. This occurs because, under this regime, the influence of triangles 

diminishes. Ultimately, within the >3 regime, the network resides in a random model, and the average distance is proportional to 

lnN. Hubs become smaller, and the variance in network degree is limited. While hubs are no longer sufficiently large to affect the 

degrees of separation, they still manage to reduce network distances. 

  
Figure 6: The network degree variance and Shannon's degree entropy in scale-free networks across different values of the scaling exponent . The network size is 
fixed at 100 nodes. 

 

In Figure 6, we observe the variations in entropy and network degree as they relate to the scaling exponent, , within the scale-free 

network model. Entropy is a concept frequently employed in network science to quantify the level of disorder or uncertainty present 

in a network. Shannon's entropy, a widely recognized measure of network entropy, characterizes the randomness in the distribution 

of node degrees within the network. While a comprehensive examination of the relationships between various network entropies, 

degrees of separation, and Milgram's condition warrants dedicated research, it is worth noting in brief that networks exhibiting greater 

homogeneity tend to yield higher entropy values and lower Milgram's condition values for larger q values. In such networks, an 

increase in the  parameter leads to reduced average distances between nodes, enhancing the likelihood of discovering shorter paths 

between them. However, this also results in diminished clustering coefficients and reduced tendencies of nodes to form groups and 

clusters. 

The figure underscores the significance of degree distribution heterogeneity in relation to Milgram's condition and degrees 

of separation. Milgram's condition is notably influenced by network statistics and structural attributes such as clustering coefficients, 

degree distribution, and other topological factors. Consequently, the level of heterogeneity can impact how information propagates 

throughout the network and subsequently affect Milgram's condition. In the case of scale-free networks characterized by a power-

law degree distribution, a few highly connected hubs coexist with numerous poorly connected nodes. These hubs assume a critical 

role in bridging various sections of the network and facilitating the transmission of information. As the degrees of separation, q, 

increase, the influence of larger cycles becomes more pronounced, and Milgram's condition is observed to exhibit an exponential 

decay pattern within this complex network model, deviating from the typical power-law regime. 

 

  
(a) Barabási-Albert (BA) model with scaling exponent 
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(b) Erdosh-Reiny (ER) random network with the probability 
connection of 0.4 
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Figure 7: Milgram's condition as a function of network size 
across various network models, encompassing random 
networks (ER), small-world networks (WS), and the Barabási-
Albert model (BA). 

(c) Watts-Strogatz small-world model with rewiring 

probability =0.3 
  

 

The relationship between Milgram's condition and network size in various network models, such as random networks, small-world 

networks, Barabási-Albert model, and scale-free models, is illustrated in Figure 7. As previously discussed, Milgram's condition can 

be interpreted as a measure of network efficiency, indicating how effectively information can be transmitted across the network. The 

presence of walks and cycles in the network, as well as their frequency, increases the likelihood of effective communication between 

nodes, even if they appear to be distant from each other. 

 Further, we mentioned that the logarithm of Milgram's condition corresponds to the percentage of nodes in the network that 

can be reached within q-degree of separation and is of the same order of magnitude as the total number of nodes in the network. 

When the plots touch the line y=0.5, it signifies that the probability of two randomly chosen nodes communicating through q 

intermediate nodes is greater than 50%. With the increase in network size, the plots for random networks and the small-world model 

show a decrease in Milgram's condition, signifying a decrease in the likelihood of efficient communication and an increase in the 

degrees of separation. In smaller and medium-sized networks of such models, achieving 3- degree of separation is still possible. 

However, for larger networks, Milgram's condition can be met for 5 and 6 degrees of separation. 

 In contrast, in scale-free networks and Barabási-Albert model, Milgram's condition is met for 3- degree of separation only 

in smaller network sizes, which closely resemble small-world models. For larger sizes, Milgram's condition is met for q4 degrees 

of separation. This observation aligns with the previously discussed influence of network topology on Milgram's condition. While 

Milgram's condition can manifest in any network model, its precise location and behavior are influenced by various factors, including 

network size. The presence of highly connected hubs linked to numerous poorly connected nodes reduces Milgram's condition as the 

network size increases. Therefore, to satisfy Milgram's boundary condition, an increase in the degree of separation between network 

nodes is required. 

Figure 8 illustrates Milgram's condition and its boundary conditions concerning the scaling exponent parameter, denoted as 

, in the scale-free network with specified characteristics. As explained in Equation (10), the logarithm of Milgram's condition serves 

as a figure of merit (FoM) that quantifies the quality of communication within a network. It reveals how effectively information can 

be transmitted within q hops (degrees of separation) relative to the network's size. The intersection of the line y=1 with these plots 

indicates the saturation point. At this stage, the search process in Milgram's experiment has spread across the entire network, and the 

probability of finding the target node becomes very high. Conversely, the line y=0.5 (the median of the CDF) signifies the average 

degrees of separation in the network. For more than half of the nodes, there are, on average, q acquaintances with whom they can 

exchange messages. The likelihood of communication through q-degree of separation to connect with each other exceeds 50%, which 

is roughly half of the boundary condition (saturation point) observed in Milgram's experiment. 

 

Figure 8: The Milgram's condition according to the scaling parameter, , of the power exponent, in the scale-free network with size 100. 
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Additionally, a lower parameter   corresponds to shorter average path lengths and more straightforward information transmission. 

The plots in Figure 8 reveal that degrees of separation q4 are associated with Milgram's boundary condition within the 2<<3 

regime, consistent with the scale-free network model. In this model, there are virtually no instances of 3-degree of separation for any 

value of the parameter . This phenomenon is a consequence of the emergence of giant hubs, explaining why degrees of separation 

q=4 to 6 are observed within the 2 regime. However, as 3, none of the degrees of separation, including q=6, can reach the 

boundary line. Nevertheless, within the power-law regime (2<<3), the degrees of separation of 5 and 6 can occur.   

 In the previous sections, we discussed the correlation between the q-degree of separation phenomenon and the rate of 

information propagation in networks. Now, we introduce a parameter called rn, which relates to the q-degree of separation and the 

information transmission rate within the network. We define rn as the ratio of the number of non-zero elements in the adjacency 

matrix of the graph to the total number of elements in the nth power of the adjacency matrix, where 1nq. It has shown that if this 

ratio equals 1 in a power of the adjacency matrix of the graph, it signifies that the search process is ergodic, and the graph is connected 

[18]. The corresponding Markov chain for this stochastic process is termed irreducible [18]. Therefore, in different network models, 

the quantity rn can provide valuable insights into the connectivity of nodes within n hops (degrees of separation), where 1nq. 

Essentially, the random variable rn indicates the percentage of network nodes that can connect to each other with a maximum of q-

degree of separation to exchange information and messages. 

 We can also define a cumulative distribution function, denoted as 
1

q

nq n
T r

=
= å , for the random variable rn. Tq represents the 

summation of the ratios of non-zero elements in the adjacency matrix to the total number of elements, encompassing degrees of 

separation from 1 to q. Essentially, this quantity signifies the cumulative likelihood of nodes that can be connected to each other 

within a maximum of q hops. 

Figure 9 illustrates diagrams representing the percentage of nodes that can connect within a maximum of q hops (rq) and 

their cumulative frequency (Tq) in scale-free network models based on the power-law scaling parameter, denoted as . In the regime 

where 2, owing to the presence of exceptionally large hubs and their dominance, as well as the contraction of average distances, it 

is observed that more than 80% of nodes can establish connections within two or three hops (degrees of separation). Within this 

range, it is evident that Tq exceeds unity, indicating a critical Milgram's condition. This signifies the occurrence of triangular 

relationships and their significant contribution in the 2  regime. In the scale-free regime of 2<<3, it becomes apparent that for q4  
degrees of separation, more than 50% of nodes are capable of exchanging information and messages. In essence, under this regime, 

3-degree separation scenarios do not occur. At the critical point =3 (Barabási-Albert model), the degrees of separation required to 

connect more than 50% of the nodes increase to 6 or more. In the  >3 regime, the situation is analogous, and low degrees of separation 

are not observed in the network; instead, a minimum of 6-degree of separation (i.e., q6) is necessary to meet Milgram's condition 

(Tq>1). 

 

  

(b)  (a) 

Figure 9: (a) The percentage of nodes connected to each other within a maximum of q hops (rq); (b) their cumulative frequency (Tq) in scale-free network model as 

a function of the scaling exponent parameter ; the network size is set to 100 nodes. 

5.2 The Milgram's Condition in Watts-Strogatz Small-World Model 

In this section, we delve into the examination of the small-world phenomenon, Milgram's condition, and degrees of separation within 

the Watts-Strogatz network model through simulation experiments and the utilization of various metrics introduced in the article.  

 Figure 10 provides frequency histograms illustrating the cycles ranging from length 3 (triangles) to length 6 (hexagons) as 

a function of the rewiring probability, , in the Watts-Strogatz small-world network model. Contrary to the initial expectation, it is 

evident that, for all values of rewiring probability  falling within the interval [0, 1], cycles with a length of 4 (squares) are more 

frequent compared to other cycle types. This phenomenon can be attributed to the dominance of cycles with a length of 4 in the 
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small-world model. The explanation lies in the fact that the small-world model algorithm initiates with a regular lattice and 

subsequently performs random edge rewiring. A regular lattice inherently contains many cycles of length 4, so that the rewiring 

process primarily alters local connections. In such network, each node is typically connected to its k nearest neighbors, often chosen 

as an even number. When the rewiring probability  is low, only a small fraction of edges swapped over time, resulting in a network 

with high clustering. The increased frequency of cycles with a length of 4 can be attributed to the fact that each set of four neighboring 

nodes within the regular ring forms a square. 

 

Figure 10: The frequency distribution of cycles with lengths ranging from 3 (triangles) to 6 (hexagons) as a function of the rewiring probability in the Watts-Strogatz 
small-world network model. This simulation involves a network consisting of 100 nodes. 

 

As the rewiring probability →1, the local clustering in the network decreases, leading to a reduction in the number of squares 

(cycles with a length of 4). This reduction results in the emergence of longer cycles in the network. However, it is worth noting that 

even as the network's local clustering decreases, cycles of length 4 remain more prevalent than other cycle lengths. This observation 

aligns with the numerical simulation outcomes depicted in Figure 10. It is important to clarify that a high local clustering coefficient 

in the small-world model does not necessarily translate to a higher number of triangles. A high clustering coefficient indicates that 

neighboring nodes in the network have a strong tendency to connect with each other, facilitating message exchange. However, this 

clustering feature does not directly contribute to the presence of more triangles. Triangles are typically counted when calculating the 

clustering coefficient because they represent the simplest closed-loop structures in a network and can potentially form more complex 

network patterns. Therefore, triangles still exist due to high clustering, but the frequency of squares is higher because of the regular 

lattice structure in the initial network graph. 

 In summary, the frequency and lengths of cycles in the small-world model depend heavily on factors such as the algorithm 

of model generation, the characteristics of the initial regular network, and the extent of rewiring probability. 

  

(b) (a) 

Figure 11: The impact of removing cycles with lengths ranging from 3 to 6 (C3 to C6) on changes in spectral energy and graph entropy within the small-world network 

model. This analysis was conducted on a network comprising 100 nodes with a rewiring probability   set at 0.35. The removal of cycles, specifically those of lengths 
3 to 6, is examined to understand its influence on two key network metrics: spectral energy and graph entropy. 

 

In another experiment, we explored the consequences of removing cycles with different lengths, ranging from 3 to 6, on the entropy 

and spectral energy of the network. Figure 11 illustrates how removing these cycles impacts the graph's entropy and energy values 

within the context of the small-world network model. We conducted this investigation on a network consisting of 100 nodes, with a 

rewiring probability set at =0.35. As evident from the diagrams, cycles play a significant role in altering the network's structure and 

influence its spectral and entropy properties. Notably, removing cycles with a length greater than 3 had a more pronounced effect on 

both the spectral energy and entropy of the network. This can be attributed to the fact that larger cycles contribute more to network 
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connectivity. However, it is crucial to note that removing cycles may not necessarily lead to a decrease in the energy and entropy of 

the graph. Removing cycles could result in the creation of new cycles or disconnected components that alter the network's spectral 

properties. 

 The plots in Figure 11 highlight that the removal of cycles with a length of 4 (squares) had the most significant impact. This 

observation suggests that these cycles tend to form tightly connected subgraphs in the network, which can be thought of as modules 

or communities. Cycles of length 4 are often part of larger structures, such as cliques. Consequently, removing such cycles disrupts 

existing patterns in the network, reducing modularity and causing more fragmentation, resulting in fewer interconnections. 

 As depicted in the diagrams, removing cycles led to a reduction in network entropy. Among the various cycle lengths, 

removing squares had the most pronounced effect. This outcome aligns with the fact that cycles with a length of 4 were the most 

prevalent in the network. Additionally, while these tightly connected subgraphs facilitate information propagation within themselves 

(via short paths), removing them from the network leads to longer paths, reducing path diversity within the network. Consequently, 

this reduces the speed of information transmission among subgraphs. The diagram associated with cycles of length 3 (triangles) 

shows that, given their lower frequency, their removal had a smaller impact on entropy and energy changes in the graph. Reducing 

entropy values can also influence the phenomenon of degrees of separation and Milgram's condition. However, the extent of this 

influence is highly dependent on the network's specifications and its connection patterns. Hence, the subsequent sections of the article 

will delve into a detailed examination of the effect of various parameters on these network properties. 

Another intriguing observation in the diagrams of Figure 11 is that, following the removal of cycles of varying lengths from 

the network, the graph's energy increased, in contrast to the entropy. This increase was particularly notable for cycles of length 4. 

This phenomenon can be attributed to the removal of cycles causing the network to become more heterogeneous and inducing 

structural changes. Consequently, these structural changes affected the spectral properties of the graph, which are highly sensitive to 

the network's structure. It is worth noting that this sensitivity to cycle removal is more pronounced in the entropy index. Thus, both 

graph entropy and energy serve as valuable indicators for explaining these structural alterations. Removing cycles introduced greater 

diversity in node degrees, leading to a decrease in entropy and an increase in graph energy. 

One important takeaway from this observation is that when assessing the impact of cycle length on eigenvalues within a 

network model (such as the small-world model), indicators like the energy associated with the eigenvalues of the adjacency and 

Laplacian matrices can be effectively employed. This is because the adjacency matrix of a graph, which determines the eigenvalues 

and, consequently, the energy of the graph, exhibits a meaningful correlation with cycle lengths in the network. Further, transitioning 

from one network model to another and altering network topologies distinctly influences the distribution of eigenvalues. In different 

network models, metrics like the spectral gap and its relationship with high clustering can be measured. This relationship implies 

efficient communication and the ability to find effective paths between nodes. However, in graphs containing a significant number 

of short cycles, the spectral gap may be less significant, making it challenging to find optimal communication paths and exchange 

messages efficiently between nodes. 

In the following sections, we will delve into various simulation experiments involving different network models and their 

statistics. The aim is to investigate how these statistics affect Milgram's condition and degrees of separation. For instance, by 

examining the impact of cycles, we can determine whether they create bottlenecks within the network, impeding efficient pathfinding 

and, consequently, affecting Milgram's condition. 

  

(b) (a) 

Figure 12: (a) The plot illustrates the ratio of the generalized clustering coefficient to the average network degree, Cp/<k>, as a function of the rewiring probability 
in the small-world model. The network size is held constant at 100 nodes; (b) the diagram displays the generalized clustering coefficients (Cp) according to the 
probability of rewiring in the small-world model, with both axes drawn in a logarithmic format. The network size and average degree are fixed. 
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Figure 12(a) presents diagrams illustrating the ratio of the average generalized clustering coefficient to the average degree, Cp/<k>, 

as a function of the rewiring probability, , in the Watts-Strogatz small-world model. The network size is kept constant. Moreover, 

Figure 12(b) shows the relationship between generalized clustering coefficients, Cp, and the rewiring probability . Both axes in this 

plot are displayed in a logarithmic format. 

Analysis of the diagrams reveals that as →1, and the network transitions towards a random network model, the generalized 

clustering coefficients decrease. In random networks, the clustering coefficient is directly proportional to the ratio of the average 

degree to the network size. Consequently, as the rewiring probability increases while maintaining a constant average degree, the 

generalized clustering coefficients decrease inversely proportional to the network size. 

 For small values of the probability , the network model exhibits small-world behavior. Notably, the effect of cycles with 

a length of 3 (triangles) is significantly different from cycles with lengths ranging from 4 to 6. Among these, cycles with a length of 

6 have the least impact and contribution. However, as the probability  increases, and the model approaches the dominion of random 

networks, the influence of cycle length diminishes. At this stage, cycles of various lengths exhibit similar contributions and are not 

significantly different from each other. 

 

Figure 13: The Milgram’s condition as a function of the rewiring probability,  , in the small-world model. The network size is kept constant, as is the fixed average 
degree.  

 

Figure 13 presents the plots of Milgram's condition based on the rewiring probability, , in the small-world model, while 

maintaining a constant average degree and a fixed network size of 100 nodes. The figure reveals that as →1, the network's behavior 

shifts towards that of a random network model. These diagrams demonstrate that, for low values of  (indicative of the small-world 

phenomenon), cycles of length 3 (triangles) or triangular clustering coefficients remain influential. In such scenarios, both high 

clustering and short paths coexist. At this stage, large clusters and giant components have not yet formed, resulting in a diminished 

contribution from longer cycles. It is important to note that the probability of such cycles' existence is proportional to ( 1)
p

C p
z-

+  

where  is the scaling parameter which controls the decay of clustering coefficients with respect to cycle length p. For low values of 

, the  parameter is relatively larger, indicating that longer cycles contribute less to the clustering coefficients. However, as  

increases and the network approaches the characteristics of random network models, →0. Consequently, there is a need to consider 

the contribution of longer cycles (moving away from the small-world phenomenon) in order to meet Milgram's boundary condition. 

These diagrams effectively illustrate the relationship between Milgram's condition and the network's topological structure in the 

small-world model. 

 

 

Figure 14: The plots of Shannon’s entropy and the degree variance in relation to the rewiring probability, , in the small-world model. The simulations maintain a 
constant network size of 100 nodes and a fixed average degree.  
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Figure 14 illustrates the changes in Shannon’s entropy and degree variance as a function of the rewiring probability, , in the Watts-

Strogatz small-world network model. The diagrams clearly demonstrate how these network properties are influenced by variations 

in . The Shannon entropy plot reveals that as →1 and the network transitions towards a more random structure, the entropy values 

also increase. This is an expected outcome, as higher  values indicate a departure from the small-world network configuration, 

leading to increased randomness and disorder in the network. The degree variance measures the variability in node degrees within 

the network. The plot for degree variance shows a significant increase as →1, signifying a shift towards a random network model. 

In contrast, for smaller  values, the network displays lower degree variance, indicating a more uniform distribution of node degrees. 

 Overall, these results align with expectations. Small-world networks, characterized by lower  values, exhibit properties 

resembling regular networks, including lower entropy, lower degree variance, and shorter degrees of separation. As  increases, the 

network transitions towards a random model, resulting in higher entropy, greater degree variance, and a need for larger degrees of 

separation to fulfill Milgram's condition. This transition reflects the changing network topology and the reduced prevalence of cyclic 

structures and clustering, which play a role in connecting different parts of the network in the small-world regime. 

 

Figure 15: The cumulative frequency of generalized clustering coefficients, denoted as Xp, as a function of the rewiring probability, , in the Watts-Strogatz small-
world network model while keeping the network size constant at 100 nodes and maintaining a fixed average degree. 

 

In Figure 15, the cumulative frequency of cycles' contributions with different lengths, spanning from 3 to 6 (summation the 

generalized clustering coefficients, Cp), is depicted with respect to various values of the rewiring probability  in the Watts-Strogatz 

small-world network model. The diagrams illustrate how the cumulative frequency of Cp changes as  varies. 

 For small values of , indicating adherence to the small-world phenomenon, the contribution and impact of cycles with a 

length of 3 (triangles) are more prominent (as indicated in Table 2). However, as →1 and the network gradually transitions towards 

a more random configuration, the contribution of cycles decreases significantly and falls below 20%. Nevertheless, in most cases, 

larger cycles continue to make a more substantial contribution. 

 In situations where  takes on large values, and the network behaves like a random model with an average distance 

proportional to lnN, the degree variance is constrained because there are no extensive clusters that influence the degrees of separation. 

Consequently, the extent of the contribution of cycles becomes roughly similar among different cycle lengths. 

  

(b)  (a) 

Figure 16: Two sets of diagrams related to the Watts-Strogatz small-world model; (a) the percentage of nodes connected to each other after a maximum of q hops 
(rq); (b), the cumulative frequency, Tq. The measurements are depicted concerning different values of the rewiring probability. The network's average degree is kept 
constant, and the network size remains fixed at 100 nodes. 
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Figure 16 provides plots for the random variable rn , 1nq, and its cumulative frequency, Tq, within the Watts-Strogatz small-world 

network model, with variations in the rewiring probability . In this context, rn represents the percentage of network nodes that can 

connect to each other within n hops, facilitating the exchange of information and messages. The quantitiy Tq, on the other hand, 

represents the cumulative frequency, signifying the summation of the probability of nodes connecting to each other within a 

maximum of q steps. 

 The diagrams demonstrate that in the small-world model, particularly for low rewiring probabilities, nodes connect to each 

other quickly within a few hops. For instance, with a rewiring probability of 10%, nearly 50% of the network nodes can be 

interconnected after 6 hops. An intriguing observation is that the condition Tq>1, analogous to Milgram's boundary condition, is met 

when the rewiring probability is at 10% and q5. However, for q≤ 4, under most circumstances, increasing the rewiring probability 

does not lead to the satisfaction of Tq > 1. This implies that the cumulative frequency reaches the saturation point, where almost all 

network nodes are reachable after q-degree of separation, primarily for q ≥ 5. 

  

(b) (a) 

Figure 17: (a) the plots depicting the percentage of nodes connected to each other within a maximum of q hops (rq); (b) their cumulative frequency (Tq) in Watts-

Strogatz small-world networks. The plots illustrate the impact of varying network sizes while keeping the rewiring probability  constant at 0.3 and assuming a fixed 
average degree for the network. 

 

The plots in Figure 17 reveal the impact of network size on the Watts-Strogatz small-world model. In these networks, it becomes 

evident that after reaching q=3 degrees of separation, nearly all network nodes become accessible to each other. Moreover, for q3, 

the Milgram's boundary condition of Tq>1 is met. This observation underscores the significance of triangular relationships in 

establishing the small-world phenomenon, particularly in relatively small networks. However, as the network size increases, the 

relative contribution of such triangular relationships decreases significantly. The plots also highlight that in larger small-world 

networks, more than half of the nodes are connected within q4 degrees of separation. This reinforces the notion that the fulfillment 

of Milgram's condition for a 3-degree separation is feasible primarily in smaller small-world networks. For larger networks, it 

becomes possible to meet Milgram's condition with higher degrees of separation. 

 The emergence of clusters and larger groups of nodes, along with a substantial number of poorly connected nodes, 

contributes to the decrease in Milgram's condition as network size increases. Consequently, to meet Milgram's condition, increasing 

the degrees of separation between network nodes becomes a necessity as network size grows. 

5.3 Hamming Distance and Network Multiplicity 

In this section, we will explore the coefficients and average Hamming distance in network models and their relationship with 

Milgram's condition and degrees of separation. The Hamming distance is employed as a measure of distance instead of the traditional 

average distance index. This metric is associated with concepts such as network heterogeneity, network energy, and the reduction of 

the resistance distance in a graph, ultimately enhancing conductivity and the speed of information propagation in the network. The 

Hamming distance is a measure that quantifies the difference between two sequences of equal length. It is commonly used in 

information theory and coding [19]. 

 In graph theory, the Hamming distance can be applied to compare two graphs based on their adjacency matrices. To compute 

the distance and the average Hamming distance within a graph, one can utilize either the adjacency or the incidence matrix. This 

distance represents the number of positions where corresponding entries differ in the adjacency matrix (incidence matrix) of the 

graph. Essentially, it corresponds to the number of edges that must be added or removed to transition from one vertex to another. 

The average Hamming distance can be determined by summing the Hamming distances across all pairs of graph vertices and then 

dividing this sum by the total number of vertex pairs. Consequently, the Hamming distance signifies the number of edges that differ 

between vertices. This measure is heavily influenced by the quantity and arrangement of edges within the graph and can be viewed 

as the expected value of the probability that two n-bit strings differ in some positions. This is why the Hamming distance is 
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occasionally referred to as the error probability in coding theory [19], as it serves as a measure for estimating the distance (difference) 

between code words in error detection and correction codes. 

 
Figure 18: The Hamming distances as a function of the number of nodes (network size) in various network models. These models include the Watts-Strogatz small-

world [3] with a rewiring probability = 0.3, the Neumann model [11], the random ER model [7] with a connection probability of 0.4, and the scale-free model [6] 

with a scaling exponent = 2.5. 

Figure 18 illustrates the Hamming distances concerning the number of nodes (network size) in different network models. In the 

Watts-Strogatz small-world network, a rewiring probability of 0.3 is applied, in the Neumann model [11], in the random ER model 

[7], the connection probability is set at 0.4, and in the scale-free model [6], the scaling exponent is assumed to be =2.5. 

Observing the plots, it is evident that as the network size increases, the Hamming distance experiences an exponential 

decrease. This reduction is particularly pronounced in scale-free networks compared to other models. An intriguing observation is 

that in the case of random networks, the Hamming coefficients remain relatively constant and nearly equal to <k>/n(2n−<k>), where 

<k> represents the average degree of the network. The decrease in the Hamming coefficient and the increase in network multiplicity 

suggest that more nodes share the same Hamming distance. 

Scale-free networks, even with increasing size, continue to exhibit the lowest Hamming distance among all the models. This 

phenomenon can be attributed to the relatively close proximity of nodes in scale-free networks, resulting in higher connectivity. 

Additionally, a measure called multiplicity in a network can be defined in terms of Hamming distance. 

(15) 1 /
h n

M D D= - 

The parameter Dh represents the internal Boolean product of two vectors, specifically rows i and j, of the network's adjacency matrix. 

On the other hand, Dn stands for the Hamming distance, which quantifies the distance between all pairs of vectors. In random 

networks, Dh can be interpreted as the mathematical expectation (average probability) that the ith element in a row (an n-bit string 

consisting of zeros and ones) differs from another n-bit string in the ith position bit. Essentially, Dh measures the average Hamming 

distance between pairs of rows in the adjacency matrix, indicating the average number of distinct elements between two rows.  

Therefore, M is a criterion, gauges the level of similarity between rows of the adjacency matrix. This metric is normalized 

relative to the maximum possible difference, Dn. Consequently, M falls within the range of 0 (when all pairs of rows are entirely 

dissimilar) to 1 (when all pairs of rows are identical). 

In the case of a regular network, where Dn equals n−1, all nodes have the same degree, and each row of the adjacency matrix 

is similar to the others. Therefore, the Hamming distance between all pairs of vertices is equal to n−1. In other words, in a regular 

graph, every vertex has the same degree, which implies that each row of the adjacency matrix contains the exact same number of 1s. 

 If the degree of each node is denoted as k, then for arbitrary rows i and j in the adjacency matrix, there are only two 

possibilities: either they are identical, resulting in a Hamming distance of zero, or they differ in precisely one position, indicating the 

presence of an edge between nodes i and j. In this latter case, the Hamming distance is equal to 1. Due to the regularity of the graph, 

each row has exactly k ones. This means that it differs from every other row in exactly k positions. Therefore, any two arbitrary rows 

i and j must be distinct in exactly k positions. In a regular graph, k is equal to n−1, as each node is connected to all other nodes except 

itself. Consequently, the total number of edges in the graph is kn/2, and the Hamming distance between two rows in a regular graph 

equals n−1. 

The multiplicity parameter M carries additional significance in the context of graph theory. It is linked to the number of 

times an eigenvalue appears as a root of the characteristic polynomial of the adjacency matrix. Consequently, it can provide valuable 

insights into both the geometric and algebraic properties of the graph. Further, M can be interpreted as a measure of redundancy 

within the graph, indicating that each eigenvalue may appear multiple times in the graph's spectrum. 
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 An interesting point to highlight is that the multiplicity criterion, based on Hamming distance, serves as a similarity measure 

between two vectors (rows) within the adjacency matrix. Higher values of M signify a greater degree of similarity between two 

vectors, which can be viewed as a strong level of connectivity and acquaintanceship between the nodes represented by these vectors. 

From the perspective of degrees of separation, the M criterion can offer valuable insights into network connectivity. For instance, if 

M is calculated for all pairs of nodes in the network and a substantial number of pairs exhibit high values, it suggests that numerous 

nodes in the network are closely interconnected. This interconnectedness results in a reduction in the average distance and shorter 

paths between nodes. 

Indeed, while the multiplicity criterion based on Hamming distance offers insights into network connectivity and similarity 

between nodes, it represents just one facet of a comprehensive analysis of network structure. To gain a thorough understanding of a 

network's properties and its influence on information propagation, degrees of separation, and overall behavior, it's crucial to consider 

this criterion alongside other key metrics such as average distance, clustering coefficient, and degree distribution. These combined 

insights provide a more holistic view of a network's characteristics and functionality. 

 
Figure 19: The Hamming coefficients as they relate to the probability of rewiring in small-world networks. The network size in this context consists of 100 nodes, 
and the horizontal axis is represented on a logarithmic scale. The Hamming coefficients are used to measure the degree of similarity or difference between networks’ 
configurations as rewiring probabilities vary. This figure likely demonstrates how the Hamming coefficients change across different rewiring probabilities in small-
world networks with 100 nodes. 

 

Figure 19 demonstrates the variation in Hamming distance with respect to the rewiring probability in small-world networks. The 

average degree is fixed and the number of nodes is set to 100. The key observations from this figure are as follows. As the rewiring 

probability, ,  increases, the network transitions toward a more random structure. This shift is associated with a significant increase 

in Hamming coefficients. For low values of , the network's structures are highly similar, resulting in small Hamming distances 

between nodes. Consequently, the multiplicity parameter values are high, indicating that many pairs of nodes share similar network 

configurations. Conversely, as →1, the similarity among network structures diminishes. This leads to a sharp decrease in the number 

of node pairs with low Hamming distances, ultimately resulting in an increase in the overall Hamming distance. 

 In summary, this figure highlights how changes in the rewiring probability impact the structural similarity of small-world 

networks. Lower rewiring probabilities result in networks with more similar structures, while higher probabilities lead to increased 

structural diversity and higher Hamming distances between nodes.  

 

Figure 20: The multiplicity parameter, M, as a function of the rewiring probability, , in the small-world network model. The network size is fixed at 100 nodes, and 
the horizontal axis is logarithmic. 

Figure 20 illustrates the plot of the multiplicity parameter, M, concerning the rewiring probability, , in the Watts-Strogatz small-

world network with a size of 100 nodes. As evident, as →1, the network tends towards randomness, leading to a rapid decrease in 

the M index. It is important to note that the impact of edge swapping and the rewiring mechanism on the M parameter heavily relies 

on the specifics of the employed rewiring mechanism. In this context, we utilized the rewiring technique associated with the Watts-

Strogatz model [3]. However, the application of random rewiring—although it partially preserves certain network characteristics like 

the degree distribution or clustering coefficient—also results in a swift reduction in M values. This is because it disrupts similarity 

patterns and common neighbors among nodes in the network. 
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In Equation (15), the parameter Dh denotes shared features or common neighbors between two nodes, while Dn represents 

the total number of differences between these nodes. Consequently, the M criterion can be interpreted as the percentage of shared 

information among interconnected nodes. Higher M values signify greater levels of similarity between nodes, which can potentially 

facilitate efficient information propagation within the network. 

It is worth acknowledging that M exhibits an inverse relationship with the Hamming distance (refer to Figures 19 and 20) 

and can determine the number of node pairs in the graph with a specific Hamming distance. This knowledge proves valuable for 

estimating metrics such as degrees of separation, network diameter, as well as the spectral properties of the graph. In cases where 

the graph boasts high multiplicity and low Hamming distance, it indicates that the nodes within the graph are strongly interconnected. 

Conversely, as the Hamming distance increases and multiplicity decreases, the graph portrays nodes that are relatively distant from 

each other, resulting in reduced connectivity. 

The multiplicity measure is also intricately linked to the average network geodesic distance. When the average distance 

decreases and the Hamming distance increases, the network's multiplicity decreases as well. A decrease in the average distance 

implies that there are more short paths connecting graph vertices, consequently increasing the number of vertex pairs with low 

Hamming distance. As previously mentioned, the clustering coefficient quantifies how strongly vertices tend to form clusters and 

communities. Higher multiplicity corresponds to increased clustering and a smaller average distance. Conversely, this relationship 

works in the opposite direction too. In random networks characterized by low clustering coefficients and higher average distances, a 

reduction in the multiplicity criterion is observed. 

High multiplicity in structures like Neumann's model [11] or the Watts-Strogatz small-world network [3] signifies the 

presence of numerous diverse and alternative routes between nodes, facilitating and expediting the flow of information throughout 

the network. The coexistence of low average distances and high clustering coefficients in such models indicates that the network 

exhibits both local and global connectivity. When Hamming distance is low and multiplicity is high, more pronounced small-world 

properties emerge. Multiplicity implies the existence of numerous alternative routes between nodes, easing information flow within 

local clusters and shortcuts connecting different regions in the network. Networks with high clustering coefficients possess many 

cycles of length 3 (triangles), resulting in low Hamming distance and high multiplicity. In summary, since multiplicity can be seen 

as a measure of path diversity or redundancy between nodes in the network, it significantly impacts degrees of separation and 

Milgram's condition. Therefore, parameter M can be related to Milgram's condition, the frequency, and the length of cycles ranging 

from 3 to 6. When a network exhibits high multiplicity, it implies more overlap between the neighbors of interconnected nodes, 

fostering the formation of cycles and shorter paths between nodes. Consequently, a greater number of alternative and potential paths 

between nodes facilitates faster information propagation and fewer degrees of separation. 

  

Table 1: Numerical values of the real-world network measures 

Real-world 
Networks  

TD [25] ASD [25] 
Zachary's 

karate club 
[22] 

Chesapeake 
[24] 

Network Virology (COVID-19) [23] 

Measures 
Delta Gamma 

Omicron 
Beta Alpha 

BA.2 BA.1 

100 100 33 39 290 292 289 289 289 289 No. of nodes (N) 

116 73 78 170 1004 1039 1035 996 1026 1009 No. of Edges (L) 

0.52 0.52 0.255 0.28 0.44 0.44 0.44 0.45 0.45 0.45 C3 

0.40 0.42 0.259 0.37 0.27 0.27 0.27 0.27 0.28 0.27 C4 

0.32 0.35 0.169 0.29 0.17 0.18 0.17 0.18 0.18 0.17 C5 

0.24 0.28 0.134 0.29 0.12 0.12 0.11 0.12 0.12 0.12 C6 

1.67 1.22 2.4082 1.83 6.043622 5.956056 5.893527 6.153547 5.872141 6.084246 Average Distance 
(<d>) 

4.6051 4.6051 3.4956 3.663 5.66988 5.67675 5.66642 5.66642 5.66642 5.66642 Ln(N) 

0.01 0.01 0.008301 0.009 0.070801 0.071289 0.070557 0.070557 0.070557 0.070557 Rate of Information 
(R) 

3.17 2.39 4.588235 8.71 6.924138 7.116438 7.16263 6.892734 7.100346 6.982699 Average Degree (<k>) 

2.889 1.625 17 3 16 14 15 18 16 16 Diameter (dmax) 

0.006 0.007 0.051 0.288 0.0221 0.0227 0.0217 0.0223 0.0212 0.0209 Heterogeneity-index 
[20] 

0.17 0.15 0.986159 1 0.294126 0.306319 0.311598 0.285617 0.304822 0.292753 q=3 
rq 

0.19 0.17 1 1 0.44126 0.456136 0.464566 0.427162 0.459657 0.435902 q=4 
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0.20 0.17 1 1 0.593246 0.606258 0.616312 0.571557 0.618084 0.58353 q=5 

0.21 0.17 1 1 0.726326 0.736771 0.744615 0.704362 0.752709 0.716047 q=6 

0.45 0.38 2.581315 3.15 0.56635 0.588103 0.59961 0.552951 0.58438 0.566732 q=3 

Tq 
0.65 0.55 3.581315 4.15 1.00761 1.044239 1.064175 0.980113 1.044037 1.002634 q=4 

0.86 0.73 4.581315 5.15 1.600856 1.650497 1.680488 1.55167 1.662121 1.586164 q=5 

1.07 0.91 5.581315 6.15 2.327182 2.387268 2.425103 2.256031 2.41483 2.302211 q=6 

4.78 4.10 15.03 38.73 4.97 5.34 5.08 5.13 5.25 4.78 Degree Variance 

0.92 0.65 1.023 1.61 2.12 2.15 2.15 2.12 2.14 2.12 q=3 

Milgram's 
Condition 

Log(Mq/N) 

1.48 1.23 1.67 2.57 2.92 2.97 2.97 2.92 2.96 2.93 q=4 

1.99 1.79 2.34 3.55 3.72 3.77 3.77 3.71 3.76 3.72 q=5 

2.42 2.29 2.93 4.47 4.5 4.57 4.50 4.5 4.56 4.51 q=6 

1.60×106 1.82×106 4.40×108 2.88×1027 7.92×1012 4.65×1013 3.68×1013 9.67×1012 9.96×1013 4.26×1013 <Zpp> Z-Estrada 
[12] 2.51×105 3.43×105 3.10×108 2.34×1027 3.43×1012 1.90×1013 1.81×1013 3.62×1012 2.48×1013 1.32×1013 <Zpq> 

0.998 0.99 0.882 0.929 0.980 0.979 0.979 0.980 0.979 0.980 Multiplicity (M) 

0.162 0.123 0.941 0.764 0.159 0.168 0.171 0.159 0.169 0.162 Hamming_Distance 

1.98 1.98 2.16 3.5 3.5 3.5 3.5 3.5 3.5 3.5 Scaling Exponent () 

0.391 0.336 0.554 0.587 0.283 0.295 0.288 0.284 0.725 0.291 Energy_Index [21] 

0.081 0.046 0.269 0.162 0.022 0.022 0.021 0.021 0.287 0.022 Shannon Entropy 

 

Up until now, we have utilized datasets based on three well-known random network models [7], small-world models [3], and scale-

free models [6], all of which are synthetically generated. However, to gain a deeper understanding of the small-world phenomenon 

and Milgram's condition, and to assess the effectiveness of the approaches discussed in this article experimentally, we have applied 

the criteria [20, 21] on datasets [22-25] obtained from real-world networks spanning various domains such as biology, technology, 

and information. The numerical results extracted from these real-world networks are presented in Table 1. Our objective is to 

demonstrate the efficacy of the criteria introduced in this article for assessing degrees of separation and Milgram's condition, and to 

what extent these concepts can be empirically verified in real-world networks. This collection includes 10 real datasets: Zachary's 

karate club [22], C. elegans [22], various variants of COVID-19 (including Omicron [BA1, BA2], Alpha, Beta, Delta, and Gamma 

[23]), the Chesapeake network [24] (a type of food web network), and brain networks, specifically typically developed (TD) and 

autism spectrum disorder (ASD) [25]. All these networks represent a wide array of complex biological, informational, social, and 

technological systems. The details and specifications of these networks, along with the numerical values of various criteria, are 

calculated and presented in Table 1. 

As observed, clustering coefficients in biological networks, such as brain and virology networks tend to be higher compared 

to other network types. Additionally, these networks exhibit lower levels of heterogeneity. In the case of various COVID-19 variants, 

parameter rq values for q3 have exceeded 60%, indicating that more than 60% of nodes (residues) in different COVID-19 variants 

can be connected within 3 to 4 degrees of separation to exchange information. Furthermore, the cumulative frequency value of Tq 

exceeds 1 for q4, signifying the total likelihood of residues being able to connect within 4 hops. 

 Moreover, when fitting a regression line to the degree distribution data of such networks, it is evident that their scaling 

exponent follows =3.5. We previously discussed that when >3, the contribution of long-range cycles decreases, and the network 

converges towards a random model. The numerical data presented in Table 1 for the average distance of COVID-19 variants indicates 

that in these networks, the average distance scales proportionally to lnN (the natural logarithm of network size). Additionally, hubs 

are smaller, and the degree variance is limited. In other words, hubs do not exert a significant influence on degrees of separation but 

rather serve to reduce distances between residues. Consequently, these findings suggest that residue networks associated with 

COVID-19 variants align well with the small-world model. 

In Section 4.1, we discussed how various factors influence the speed of information propagation within a network. To 

quantify the rate of information propagation, we introduced the R-index and the Z-Estrada parameter [12, 13]. Notably, the Z-Estrada 

parameter is particularly effective at capturing the information transfer capacity in small-world networks due to its ability to account 

for longer walks. When comparing the numerical results of the Z-Estrada parameter for different COVID-19 variants, a striking 

observation emerges. The values of the Z-Estrada for the Omicron variant are significantly higher than those for other variants, 

particularly the Delta variant. This observation provides valuable insights into why the Omicron variant exhibits a much higher rate 

of spread and contagiousness compared to other COVID-19 variants. 
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6. Conclusions, Directions, and Future Work 

In this paper, we conducted a thorough exploration of the concept of degrees of separation and Milgram's condition in various 

complex network models, including random, small-world, and scale-free networks, from multiple perspectives and using various 

criteria. We presented an in-depth analysis that brings together previously unreported findings in a comprehensive manner. Our 

investigation encompassed the interplay between degrees of separation and other network statistics, such as average clustering 

coefficients and generalized clustering coefficients for cycles of different lengths, as well as the relationship between cycles and 

degrees of separation. Additionally, we examined the information propagation rate and its correlation with degrees of separation, 

considering different network topologies. We delved into the connection between degrees of separation and network heterogeneity, 

while also analyzing the impact of Hamming distance and the multiplicity criterion on degrees of separation and Milgram's condition. 

The numerical results derived from simulation outcomes clearly demonstrated that the presence of cycles of varying lengths within 

a network has a discernible impact on degrees of separation and Milgram's condition. We also observed direct relationships between 

Milgram's condition and both the clustering coefficient and the scaling exponent in the power-law regime in the scale-free network 

model. Furthermore, we highlighted the role of rewiring probability in small-world networks concerning degrees of separation. Our 

detailed examination of the multiplicity factor and Hamming distance shed light on their influence on the small-world phenomenon. 

Consequently, this article has contributed a comprehensive overview of degrees of separation and Milgram's condition in the context 

of complex networks, offering insights into potential applications across various domains. 

Indeed, while this study has provided valuable insights into degrees of separation and Milgram's condition in complex 

networks, there remain numerous avenues for future research that warrant exploration. One intriguing direction is to investigate how 

community structures and modularity within networks influence degrees of separation, as well as their potential impact on 

information propagation and network resilience. In addition, delving into the realm of temporal dynamics and evolving networks 

could yield significant findings in this field. Applying the concepts and models discussed here to real-world small-world networks, 

including social, transportation, virology, and biological networks, among others, can offer valuable insights into the mechanisms 

and factors governing information flow within these systems. Evaluating network resilience and robustness against random failures 

and systematic attacks, with a specific focus on Milgram's condition and degrees of separation, is another promising avenue for future 

research. Additionally, it would be worthwhile to explore the influence of other criteria, such as weak ties and bridging nodes, on 

complex network properties and their relationship with degrees of separation and Milgram's condition. These directions hold the 

potential to expand our understanding of information dissemination and network dynamics in complex systems. 
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