
January 2024, Volume 1, Issue 2

158

A Deep Learning Framework for Evaluating Dynamic Network Generative

Models and Anomaly Detection
Alireza Rashnu, ORCID: 0009-0009-6948-9290

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran, a.rashnou@alumni.sbu.ac.ir

Sadegh Aliakbary, ORCID: 0000-0001-5773-1136

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran, s_aliakbary@sbu.ac.ir

A B S T R A C T

Understanding dynamic systems like disease outbreaks, social influence, and information diffusion requires effective

modeling of complex networks. Traditional evaluation methods for static networks often fall short when applied to

temporal networks. This paper introduces DGSP-GCN (Dynamic Graph Similarity Prediction based on Graph

Convolutional Network), a deep learning-based framework that integrates graph convolutional networks with dynamic

graph signal processing techniques to provide a unified solution for evaluating generative models and detecting

anomalies in dynamic networks. DGSP-GCN assesses how well a generated network snapshot matches the expected

temporal evolution, incorporating an attention mechanism to improve embedding quality and capture dynamic structural

changes. The approach was tested on five real-world datasets: WikiMath, Chickenpox, PedalMe, MontevideoBus, and

MetraLa. Results show that DGSP-GCN outperforms baseline methods, such as time series regression and random

similarity assignment, achieving the lowest error rates (MSE of 0.0645, MAE of 0.1781, RMSE of 0.2507). These

findings highlight DGSP-GCN's effectiveness in evaluating and detecting anomalies in dynamic networks, offering

valuable insights for network evolution and anomaly detection research.

A R T I C L E I N F O

Keywords: Complex Network, Network Modeling, Graph Neural Network, Graph Comparison, Anomaly Detection,

Deep learning,

1. Introduction

Complex network structures are ubiquitous in various real-world systems, ranging from social networks to biological

systems and technological infrastructures [1]. Studying these networks has become increasingly important in recent years

as they provide opportunities to understand the behavior and dynamics of complex systems [2]. In particular, the analysis

of complex networks has been used to gain insights into a wide range of phenomena, including the spread of diseases [3]

and the diffusion of information [4]. Network generation models are a powerful tool for understanding, analyzing,

simulating, and designing complex systems that can be represented as networks. Network modeling plays a crucial role

in helping us understand the intricate structure and organization of interconnected systems with the aim of understanding

how the system functions and responds to different perturbations. By modeling the dynamics of complex systems, we

can simulate and analyze how information, influence, or phenomena spread through the network like epidemics [5].

 On the other hand, evaluating the output of network generative models can be difficult because there is no clear

objective measure of what constitutes a "good" output. Unlike discriminative models, where the output can be evaluated

based on its accuracy in predicting a known label or class, generative models are designed to create new data similar to

the training data. This means that any specific criteria do not necessarily constrain the output of a generative model and

can be highly subjective. Furthermore, generative models often produce probabilistic outputs, meaning that the same

input can result in different outputs each time the model is executed. This makes it difficult to compare the output of a

generative model to a ground truth dataset, as there may be multiple valid outputs for a given input. As a result, evaluating

Submit Date: 2024-12-06

Revise Date: 2025-02-06

Accept Date: 2025-04-12
 Corresponding author

https://orcid.org/0009-0009-6948-9290
https://orcid.org/0000-0001-5773-1136

January 2024, Volume 1, Issue 2

159

the output of generative models often requires a combination of quantitative and qualitative analysis and human

judgment. Generally, researchers have used three approaches to evaluate the output of network generative models:

1) The structural features of an artificial graph (such as the degree distribution, the clustering coefficient distribution,

and transitivity) and its real counterpart are compared [6-8].

2) Indirect assessment. A classification model is trained with real graphs and tested with generated graphs. If the artificial

graph is similar to the target graph, the classification model gives a score of one; otherwise, a zero score is received
[9].

3) Quality-based approach. The identical edges in the structure of the generated graph and the real graph are kept constant

for model evaluation. In contrast, the other links of the synthetic graph nodes are changed randomly. In this case, if

the statistical parameters of the synthetic graph, such as degree distribution, density, diameter, etc., do not change

compared to the real graph, the generating model has shown good performance [10].

 Although these methods are inherently designed for evaluating static graph generative models, some dynamic

generative models have used them for model evaluation [11-15]. Dynamic networks change; therefore, evaluation

methods designed for static networks may not be suitable. For example, metrics that measure the centrality of nodes in a

static network may not be useful for understanding the dynamics of a network over time because it will not necessarily

have a fixed value.

 Temporal networks, characterized by their evolving connections over time, introduce a layer of complexity beyond

traditional static network models. Predicting node status within such dynamic contexts necessitates a nuanced

understanding of how graph similarity, often explored in static settings, translates to temporal dynamics. Our research

addresses this critical gap by elucidating the interconnectedness between graph similarity metrics and the evolving states

of nodes in temporal networks. By leveraging insights from graph similarity learning, we discern patterns in temporal

network dynamics that influence node status predictions. Our approach acknowledges the dynamic nature of real-world

systems, where nodes interact and evolve over time, rendering traditional static analyses insufficient for capturing the

full spectrum of network behaviors. Furthermore, our work recognizes the limitations of existing evaluation methods

designed primarily for static graph generative models when applied to dynamic network settings.

 In this paper, we consider the challenge of evaluating dynamic complex network generative models' output using

different graph embedding mechanisms, recurrent neural networks (RNN), and fully connected layers. In other words,

given the history of a dynamic network and a new snapshot, the proposed model called DGSP-GCN (Dynamic Graph

Similarity Prediction based on Graph Convolutional Network) predicts how likely the hypothetical snapshot will be the

future of the same temporal network. While it is true that DGSP-GCN leverages existing embedding methods, its

contribution lies in the novel synthesis, customization, and application of these techniques within a unified framework

tailored for dynamic graph node-level similarity prediction. Our experiments illustrate that the proposed model

outperforms the baselines. The main contributions of this paper are as follows:

1) A Deep Learning-Based Evaluation Method for Dynamic Network Generative Models: We introduce DGSP-GCN, a

graph convolutional network-based approach that effectively captures both spatial and temporal dependencies in

dynamic graphs. This enables a robust and accurate assessment of the quality of generated dynamic networks;

2) A Unified Framework for Anomaly Detection in Temporal Complex Networks: Our proposed method not only

evaluates the fidelity of synthetic networks but also detects anomalies in real-world temporal graphs by leveraging

dynamic graph signal processing techniques. This provides a versatile and effective tool for analyzing evolving

network structures;

3) Empirical Validation on Real and Synthetic Datasets: We evaluate DGSP-GCN on multiple benchmark datasets,

demonstrating its superiority in both evaluating generative models and detecting anomalies in dynamic graphs. Our

results confirm that DGSP-GCN outperforms existing baselines in predictive accuracy and robustness.

 The rest of this paper is organized as follows: Section 2 reviews the state-of-the-art graph similarity prediction models.

In Section 3, the problem statement is presented. Section 4 illustrates our proposed method. Section 5 shows the

experimental evaluations. Finally, section 6 concludes and explains the future works.

2. Literature review

 In the vast realm of data analysis, understanding the unique attributes and relationships within complex structures has

appeared as a paramount challenge. Within this context, graph similarity learning has emerged as an intriguing avenue,

enabling researchers to uncover hidden correlations, discover underlying patterns, and extract valuable insights from

interconnected data. The primary goal of graph similarity learning is to develop effective techniques that capture the

inherent similarities and dissimilarities between graphs [16]. We can discern their structural, topological, and semantic

characteristics by measuring the similarity between graphs. This holistic understanding allows us to categorize graphs

more accurately, identify anomalies, and better understand their underlying dynamics [17]. For instance, in social

network analysis, graph similarity learning can help identify communities or clusters of individuals with similar social

A Deep Learning Framework for Evaluating Dynamic Network Generative Models and Anomaly Detection

160

connections. Moreover, graph similarity learning has applications in recommendation systems, which can be used to

identify similar users or items based on their interconnected relations.

 In summary, graph similarity learning is a vital tool in data analysis, allowing us to unlock hidden insights, understand

complex structures, and make informed decisions in various domains. Our work aims to reconcile the realms of graph

similarity learning with the intricacies of temporal network dynamics, shedding light on evolving system states and

facilitating predictive insights into node behaviors. Generally, graph similarity learning approaches are divided into

categories, including graph kernels, graph embedding methods, and graph neural networks (GNN). We will examine

each one below.

2.1. Methods based on graph kernels

 A graph kernel is a function that measures the similarity between two graphs by mapping them into a high-dimensional

feature space. Graph kernels are commonly used in machine-learning tasks involving graph-structured data [18]. The

basic idea behind graph kernels is to define a function that maps each graph into a vector of features that capture its

structural properties. The similarity between the two graphs can then be computed as the inner product of their feature

vectors in the high-dimensional space [19].

 There are many different types of graph kernels, each with its strengths and weaknesses. Some popular graph kernels

include the random walk kernel [20], the subtree kernel [21], and the neighborhood hash kernel [22]. The choice of kernel

depends on the specific application and the properties of the graphs being analyzed. While graph kernel methods have

many advantages, they also face several challenges that must be carefully considered when applying them to real-world

problems [16]. Here are some of the main challenges:

• Computational Complexity: Graph kernel methods can be computationally expensive, especially for large

graphs. Since these methods involve comparing graphs based on structural or topological properties, the

computations can become time-consuming and resource-intensive as the size of the graphs increases. This can

limit their scalability and efficiency in handling large-scale graph datasets.

• Kernel Choosing: There are many different types of graph kernels, each with its own strengths and weaknesses.

Choosing the right kernel for a particular problem can be challenging, and there is often no clear best choice.

• Sensitivity to Graph Representations: Graph kernel methods heavily rely on the representations of graphs, such

as node or edge labels, that are provided as input. Small changes or variations in these representations may lead

to significantly different kernel values, affecting the similarity measures between graphs.

2.2. Graph embedding methods

 Graph embedding methods for similarity are techniques used to represent graphs as low-dimensional vectors, which

can be used to measure similarity between graphs. These methods aim to capture the structural and semantic information

of the graph in the embedding space, such that similar graphs are mapped to nearby points in the embedding space. There

are various graph embedding methods for similarity, including node and graph embedding methods. In the case of node

embedding, the aim is a representation of each node to a vector by some methods like node2vec [23, 24], which can be

aggregated to obtain an embedding for the entire graph [25]. Graph embedding methods aim to directly learn the

representation of the entire graph by considering the graph structure like [26-28]. However, there are several challenges

associated with graph embedding methods, including [17]:

• Heterogeneity: Graphs can be heterogeneous, containing different nodes and edges. Embedding methods need

to handle this heterogeneity and capture the relationships between different types of nodes and edges.

• Structure-oriented: Although structural features such as node degree distribution, clustering coefficient

distribution, number of triangles, network diameter, etc., are used to generate vectors at the node and graph

levels, the node and edge level features are not considered for embedding.

• Loss of Graph Structure Interpretability: Embedding methods aim to represent graphs in low-dimensional vector

spaces. While this enables numerical comparisons and similarity metrics, it can lead to a loss of interpretability

in terms of the original graph structure. The transformed representations may not directly reveal the inherent

graph properties and relationships, making comprehending the reasons behind similarity or dissimilarity scores

challenging.

2.3. GNN-based methods

 GNN methods are a class of machine learning techniques that have emerged as powerful tools for graph similarity

prediction. By leveraging their ability to capture and learn from complex graph structures, GNNs offer a promising

approach for comparing the similarity of different graphs. Through a series of iterative aggregation and transformation

steps, GNNs can effectively encode the inherent structural properties of graphs into low-dimensional representations,

commonly referred to as node or graph embeddings [29-31]. Not only do these learned embeddings encapsulate the

topological relationships and attributes of individual nodes, but they also capture the global structural patterns and

January 2024, Volume 1, Issue 2

161

dependencies present in the graph as a whole. By harnessing the expressive power of GNNs, graph similarity prediction

can benefit from the rich representations learned by the network, facilitating more accurate and nuanced comparisons

between complex and heterogeneous graph structures in diverse domains.

 One popular approach for graph similarity prediction using GNNs is to use Siamese networks [32-35], which consist

of two identical GNNs that take in two different graphs as input and output a similarity score. The two GNNs share the

same weights, allowing them to learn a common representation of the graphs. Another approach is to use a contrastive

loss function, which encourages the GNN to learn representations that are close together for similar graphs and far apart

for dissimilar graphs [36]. This can be combined with a Siamese network architecture to learn a similarity function. Other

GNN-based approaches for graph similarity prediction include using attention mechanisms to focus on important

substructures within the graphs [37]. While Graph Neural Network (GNN) based methods have shown promising results

in graph similarity learning, they also have a few disadvantages.

Here are some of them [17]:

• Computational Complexity: GNNs can be computationally expensive, especially for large graphs with a high

number of nodes and edges. The complexity increases as the graphs' size and complexity grow, making it

challenging to scale GNN-based methods to large-scale graph similarity learning tasks.

• Interpretability and Explainability: The complex nature of the GNN architecture makes it challenging to

understand how and why certain patterns are learned and used for similarity comparisons. Interpreting the

decisions made by GNN-based models can be difficult.

3. Proposed method

3.1. Problem statement

 With the help of synthesized networks, we can represent complex systems through graph structure. The node's

connections in real networks are a specific and meaningful pattern. Therefore, the corresponding synthesized network

should match the real network. Put differently, the closer the synthetic network is to the target network, the more precise

the outcomes of different tests conducted on the synthetic networks will be.

 If 𝔾 is a dynamic complex network and its snapshots contain {𝐺1, 𝐺2,…, 𝐺𝑇}, then the problem is to predict the

similarity of a network 𝐺𝑟 (perhaps a synthesized graph) with 𝐺𝑇+1 of 𝔾. To formalize this prediction task, Eq. (1)

introduces the inputs and output of the problem, where f is a function that takes in the sequence {𝐺1, 𝐺2,…, 𝐺𝑇} and 𝐺𝑟

to compute the similarity and S(𝐺𝑇+1,𝐺𝑟) is the similarity between 𝐺𝑇+1and 𝐺𝑟. We assume that the considered networks

are static graph-temporal signals. This implies that the arrangement of the network remains constant throughout time,

but the attributes of the network nodes alter over time.

𝑓({𝐺1, 𝐺2, … , 𝐺𝑇}, 𝐺𝑟) = 𝑆(𝐺𝑇+1, 𝐺𝑟) (1)

 One of the paramount applications of predicting the similarity between evolving network states lies in anomaly

detection within dynamic complex networks. Sudden deviations in the similarity score of 𝑓({𝐺1, 𝐺2, … , 𝐺𝑇}, 𝐺𝑇+1) might

indicate potential anomalies, such as malicious activities or unexpected patterns. Consequently, leveraging this

similarity-based approach offers a proactive mechanism to identify and mitigate threats or disruptions in dynamic

network environments. Furthermore, this predictive framework is pivotal in evaluating the efficacy and performance of

dynamic generative models. Generative models that emulate and reproduce complex networks' structural and temporal

characteristics necessitate rigorous evaluation metrics. Researchers and practitioners can quantitatively assess dynamic

generative models' fidelity, robustness, and generalization capabilities by juxtaposing the predicted similarity scores with

ground truth or benchmark snapshots. Such evaluations ensure that generative models capture essential temporal

dynamics, structural nuances, and emergent behaviors inherent to real-world complex networks, thereby fostering

advancements in network synthesis, simulation, and reconstruction methodologies.

A Deep Learning Framework for Evaluating Dynamic Network Generative Models and Anomaly Detection

162

Algorithm 1. Algorithm of noise injection approach

Input: Buckets # 𝐁𝐮𝐜𝐤𝐞𝐭𝒊={𝐆𝟎, 𝐆𝟐,…, 𝐆𝑻, 𝐆𝒓}

Output: List of labels, Buckets

1. Dictionary ←{}

2. List_of_labels[len(Buckets)] ←{1}

3. Number_of_nodes ← len(Buckets[0][0].nodes)

4. for i=0 to Number_of_nodes do

5. Dictionary[i] ←[0.0]

6. for bucket : Buckets do

7. for node = 0 to Number_of_nodes do

8. if min(bucket[node]) < Dictionary[node][0] then

9. Dictionary[node][0] ← min(bucket[node])

10. if max(bucket[node]) > Dictionary[node][1] then

11. Dictionary[node][1] ← max(bucket[node])

12. Index_of_randomly_selected_buckets ← random(range(0, len(Buckets) - 1),

random(range(0, len(Buckets) - 1), 1))

13. for bucket_index : Index_of_randomly_selected_buckets do

14. Number_of_randomly_selected_nodes ← random(range(0, len(Buckets[0][0].nodes)

- 1), 1)

15. Index_of_randomly_selected_nodes ← random(range(0, len(Buckets[0][0].nodes)-

1), Number_of_randomly_selected_nodes)

16. List_of_labels[Bucket_index] ← 1− (Number_of_randomly_selected_nodes /

(len(Buckets[0][0].nodes)))

17. for node_index : Index_of_randomly_selected_nodes do

18. Buckets[bucket_index][node_index].node_feature[-1] ←

random(Dictionary[node_index][0], Dictionary[node_index][1])

Fig. 1. The process of preparing datasets with the help of the noise injection approach to train the proposed model.

3.2. Noise injection approach

 Referring to Eq. (1), when 𝐺𝑟 aligns perfectly with 𝐺𝑇+1, the resultant similarity metric will be unity (i.e., S (𝐺𝑇+1,𝐺𝑟)

= 1). Conversely, any divergence or alteration in 𝐺𝑟 leads to a proportional decrement in the similarity value. To illustrate,

if 𝐺𝑟 undergoes a 20% modification, the similarity is quantified as S (𝐺𝑇+1,𝐺𝑟) = 0.8. Motivated by this foundational

understanding, we harness the concept of noise injection to curate a comprehensive training dataset for our deep learning-

based model, denoted as f. This research's datasets encompass distinct temporal snapshots organized into various buckets.

We systematically introduce varied noise levels into 𝐺𝑟 within these buckets, representing the terminal snapshot.

Subsequently, we delineate the label for each bucket predicated on the computed similarity distance, thereby facilitating

a robust training paradigm for our predictive model. Fig. 1 and Algorithm 1 illustrate the noise injection approach. First

of all, we assign a Y = 1 similarity label to each of the buckets of datasets, which shows the degree of complete similarity

of the last snapshot with its real state. Then, we randomly select several buckets. Next, some nodes are randomly selected,

January 2024, Volume 1, Issue 2

163

like nodes 3, 4, and 5 in Fig.1, and to inject a logical noise, a random value between the minimum and maximum value

that the node has in the entire dataset is replaced by the last feature of the node. Finally, the bucket similarity label is

calculated using Eq. (2).

𝑌𝐵𝑢𝑐𝑘𝑒𝑡[𝑖] = 1 -
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑛𝑜𝑑𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
 (2)

3.3. DGSP-GCN method

 In this study, we introduce DGSP-GCN, a novel deep learning-based framework that integrates dynamic graph signal

processing (DGSP) techniques with GCNs for the evaluation of generative models and anomaly detection in temporal

complex networks. The datasets used in this research are dynamic complex networks, requiring the integration of GNNs

and RNNs to effectively capture both spatial and temporal dependencies. The GNN layers enable the network to learn

node and graph representations by propagating information across neighboring nodes, preserving both local and global

structural relationships. This is achieved through an iterative message-passing mechanism, where each node aggregates

information from its neighbors to update its representation.

Fig. 2 illustrates the architecture of our proposed DGSP-GCN model, which consists of four main stages:

1. Graph Embedding via GCN

• Each snapshot of the temporal network is processed using a GCN layer to generate 32-dimensional

embeddings for nodes and edges.

• This transformation captures the structural properties of the graph while preserving connectivity

information.

2. Temporal Feature Extraction via RNNs

• The sequence of graph embeddings from multiple snapshots is passed through an RNN layer (e.g., LSTM

or GRU).

• This step models the evolution of node relationships over time, capturing temporal dependencies in the

dynamic network.

3. Graph-Level Representation via Mean Pooling

• A mean pooling layer aggregates node-level embeddings into a compact representation of the entire

graph sequence.

• This enables the model to perform similarity forecasting at the graph level.

4. Similarity Prediction via Multilayer Perceptron (MLP)

• The pooled representation is passed through a three-layer MLP with 32, 64, and 1 neurons, respectively.

• The final output is a predicted similarity score for the last snapshot 𝐺𝑟 relative to previous snapshots 𝐺1

to 𝐺𝑇 ,
• The snapshot 𝐺𝑟 corresponds to 𝐺𝑇+1 in the input bucket, where 50% noise injection is applied during

training to enhance model robustness.

The similarity prediction process by the proposed method is outlined in Algorithm 2. This structured approach ensures

that both spatial and temporal relationships within dynamic graphs are captured effectively, improving the accuracy of

generative model evaluation and anomaly detection.

 To develop the most effective model architecture, we conducted extensive experimental comparisons using different

node embedding techniques, including:

1) GConvGRU (Graph Convolutional Gated Recurrent Unit) [38]. It consists of multiple layers of GConvGRU cells.

Each cell has two main components: a GCN layer and the Gated Recurrent Unit (GRU) layer.

2) GConvLSTM (Graph Convolutional Long Short-Term Memory) [38]. It combines the GCN and long short-term

memory (LSTM) networks to capture both spatial and temporal dependencies in the graph data.

3) TGCN (Temporal Graph Convolutional Network) [39]. Its architecture comprises several layers, such as GCN, GRU,

and temporal pooling.

4) AGCRN (Adaptive Graph Convolutional Recurrent Network) [40]. It consists of two main components, including

gated convolutional layers and recurrent units, to effectively capture spatial and temporal dependencies in the data.

5) A3TGCN (Attention Temporal Graph Convolutional Network) [41]. The A3T-GCN employs a soft attention

mechanism to calculate the importance of each hidden state from the historical time points and to generate a context

vector that encapsulates global temporal variations. The attention mechanism consists of the following key steps and

equations:

A Deep Learning Framework for Evaluating Dynamic Network Generative Models and Anomaly Detection

164

1. Score Calculation: A scoring function is used to compute the score 𝑒𝑖, Eq. (3), for each hidden state ℎ𝑖 at time

i. The score measures the relevance of ℎ𝑖 to the prediction task. In the A3TGCN, a two-layer perceptron is

used for this purpose:

𝑒𝑖 = 𝑤(2), 𝑅𝑒𝐿𝑈(𝑤(1) + 𝑏(1)) + 𝑏(2) (3)

Here:

• 𝑤(1) and 𝑏(1) are the weight and bias for the first layer.

• 𝑤(2) and 𝑏(2) are the weight and bias for the second layer.

• ReLU is the rectified Linear Unit activation function.

2. Weight calculation: The scores 𝑒𝑖 are normalized using a Softmax function to compute the attention weights

α𝑖, Eq. (4). This ensures the weights sum to 1, representing the relative importance of each hidden state:

 α𝑖 =
exp(𝑒𝑖)

∑ exp(𝑒𝑘)𝑛
𝑘=1

 (4)

Here, n is the total number of time points in the historical sequence.

3. Context Vector: According to the Eq. (5), the context vector 𝐶𝑡 is calculated as a weighted sum of the hidden

states, where the weights α𝑖 represent the importance of each state:

 C𝑡 = ∑ α𝑖 , h𝑖

𝑛

𝑖−1

 (5)

The context vector 𝐶𝑡 summarizes the global temporal variation information, which is then used in subsequent

layers for prediction.

These equations allow the A3TGCN to dynamically adjust the influence of different time points, enabling it to

better capture long-term dependencies and improve forecasting accuracy.

 Through a series of controlled experiments in Section 4 (Experiments), we find that the A3T-GCN architecture

consistently outperforms other alternatives in terms of both predictive accuracy and computational efficiency when

integrated with dynamic graph signal processing techniques. As a result, we adopt the A3T-GCN architecture as the core

of our DGSP-GCN framework, ensuring that it effectively captures evolving graph structures while maintaining

computational feasibility.

Fig. 2. The architecture of DGSP-GCN model

January 2024, Volume 1, Issue 2

165

Algorithm 2. Algorithm of DGSP-GCN

Input: Bucket # 𝐁𝐮𝐜𝐤𝐞𝐭𝒊 = {𝐆𝟎, 𝐆𝟐,…, 𝐆𝑻, 𝐆𝒓}

Output: Y_hat # (predicted similarity between 𝐆𝑻+𝟏 and 𝐆𝒓)

1. Vectors_of_nodes ← []

2. for snapshot : Bucket.snapshots do

3. Node_embedding_list ← []

4. for node : snapshot.nodes do

5. Node_embedding_list.append(graph_convolution_layer(snapshot)) # 32-

dimensional vector for each node

6. Vectors_of_nodes.append(recurrent_neural_network(Node_embedding_list)

recurrent neural network like LSTM

7. Vector_of_bucket ← 0

8. for vector : Vectors_of_nodes do

9. Vector_of_bucket ←\gets← Vector_of_bucket + vector

10. Y_hat{Y} ← dense_layer_with_32neurons(Vector_of_bucket /

len(Vectors_of_nodes))

11. Y_hat{Y} ← dense_layer_with_64neurons(Y_hat)

12. Y_hat{Y} ← dense_layer_with_1neuron(Y_hat{Y})

3.4. The performance measures

 Evaluating machine learning models is crucial in assessing their performance and effectiveness. The choice of

appropriate evaluation metrics holds immense importance due to objective assessment. In other words, evaluation metrics

provide an objective and standardized way of measuring and comparing model performance. To evaluate the performance

of our regression model, it is common to use Eq. (6), Eq. (7), and Eq. (8), where N is the number of samples, Y is the

real label, and 𝐘 is the label predicted by the model.

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸) =
1

𝑁
 ∑ (𝑌 − �̂�)

2𝑁

𝑖=1
 (6)

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) =
1

𝑁
 ∑ |(𝑌 − �̂�)|

𝑁

𝑖=1
 (7)

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) = √
1

𝑁
 ∑ (𝑌 − �̂�)

2𝑁

𝑖=1
 (8)

 Giving higher weights to larger errors is one of the advantages of MSE, thereby indicating the importance of reducing

significant deviations. Nevertheless, one disadvantage of it is that it squares the errors, which can lead to an amplification

of the impact of outliers. On the other hand, although MAE is less sensitive to outliers and provides a robust measure of

error, it may not fully capture the relative importance of different errors. However, RMSE combines the benefits of both

MSE and MAE by calculating the square root of the average squared difference between predicted and actual values.

Therefore, with the help of these measures, we can evaluate the performance of the proposed model in different aspects.

4. Experiments

4.1. Evaluation methods

 In order to comprehensively assess the performance of our model, we conducted a thorough comparative analysis

against a set of baselines. This evaluation methodology allows us to gauge the effectiveness and superiority of our

proposed approach in tackling the given problem. However, previous methods in graph comparison are limited to static

graphs, while the datasets used in this research are temporal. That is why we have presented two baselines, including

time series regression and random methods, to compare the performance of the proposed model. In the case of the random

method, a random number between zero and one is generated as �̂� for each sample of the test dataset. Although the

random method's performance is not impressive, it does assure us that our proposed model for similarity prediction is

not performing worse than the least effective baseline. Another baseline idea we presented is the use of time series

regression. Fig. 3 and Algorithm 3 describe the process of similarity prediction. In this case, a regression model is trained

for each node in every sample of the test dataset. The model gets the features of the node from snapshots 1 to T-1 to

A Deep Learning Framework for Evaluating Dynamic Network Generative Models and Anomaly Detection

166

predict its feature for the next snapshot. In other words, this model predicts the last feature for each node after receiving

n-1 previous features of the node. Eventually, the amount of �̂�𝐵𝑢𝑐𝑘𝑒𝑡[𝑖] calculate based on Eq. (9).

�̂�𝐵𝑢𝑐𝑘𝑒𝑡[𝑖] =
1

𝑚
 ∑ 1 − |𝑌𝑗 − �̂�𝑗|

𝑚

𝑗=1
 (9)

Where m is the number of nodes in each sample, 𝑌j is the real label of the node of the last snapshot and �̂�j is the predicted

label by the time series regression model. The absolute difference between these two values represents the amount of

noise injected into the last feature of each bucket node.

Fig. 3. The process of time series regression for prediction of bucket's label for each sample of the test dataset.

Algorithm 3. Algorithm of time series regression method

Input: Buckets

Output: Y_hat

1. Time ← []

2. for i : list(range(len(Buckets[0].node[0].feature) - 1)) do

3. Time.append(i)

4. Y_hat ← []

5. for bucket : Buckets do

6. List_Y_hat_nodes ← []

7. List_Y_test_nodes ← []

8. for node_features : range(len(bucket.node)) do

9. node_features ← min_max_normalization(node_features)

10. LinearRegression.fit(Time, node_features[0:-1])

11. List_Y_hat_nodes.append(LinearRegression.predict(Time[-

1]+1))

12. List_Y_test_nodes.append(node_features[-1])

13. Noise_list ← []

14. for j : range(len(List_Y_test_nodes)) do

15. Noise_list.append(1 - absolute(List_Y_test_nodes[j] -

List_Y_hat_nodes[j]))

16. Y_hat.append(mean(Noise_list))

4.2. Data description

 This section emphasizes a robust and comprehensive data description to provide a solid foundation for our research

findings and analysis. Data plays a crucial role in shaping the outcomes of any study, and by thoroughly understanding

the datasets used, we can ensure the validity and reliability of our results. Therefore, we use five real-world available

datasets, which are a kind of static graph-temporal signals. They include the following:

January 2024, Volume 1, Issue 2

167

1) WikiMath [42]. This is a collection of important math articles from Wikipedia, presented as a graph where each page

is a vertex and links between them are edges. The weight of each edge represents the number of links from the source

page to the target page. The target is the number of daily visits to these pages.

2) Chickenpox [43]. This is a collection of information about chickenpox cases in Hungary. The data includes the number

of chickenpox cases each week, where each city is a vertex and the road between them an edge.

3) PedalMe [44]. This is a dataset of Bicycle deliveries in London. The data is represented as a graph, where different

areas are the vertices, and the connections between them are the edges. The vertex features show the number of

deliveries requested each week.

4) MetraLa [45]. This dataset predicts traffic patterns in the Los Angeles Metropolitan area. The data was gathered from

207 loop detectors on highways throughout Los Angeles County.

5) MontevideoBus [46]. This dataset contains information about the number of passengers who boarded buses at various

stops in Montevideo city. The weight of these connections represents the distance between stops.

These datasets are summarized in Table 1. To train and evaluate our proposed model for each dataset, we use the cross-

validation method with K=3.

Table 1: The used datasets in our experiments.

Dataset #Nodes #Edges #Snapshots Frequently

WikiMath 1068 27079 731 Daily

Chickenpox 20 102 520 Weekly

PedalMe 15 225 30 Weekly

MetraLa 207 1722 3224 5-Minutes

MontevideoBus 678 690 734 1-Hours

4.3. Experimental result

 The hyperparameters used in our experiments were set as follows: the number of epochs was 30, the number of

snapshots per bucket was 10, the node embedding dimension was 32, and the learning rate was 0.01. The experiments

were conducted on five real-world datasets: WikiMath, Chickenpox, PedalMe, MontevideoBus, and MetraLa.

 To ensure the robustness and optimal performance of the proposed DGSP-GCN model, we conducted extensive

ablation studies to evaluate the impact of key hyperparameters, including the number of epochs, snapshot size per bucket,

node embedding dimension, and learning rate. These studies were performed across all datasets to identify the most

effective configuration for the model. For instance, we tested embedding dimensions of 16, 32, and 64 and found that a

dimension of 32 consistently provided the best balance between computational efficiency and predictive accuracy.

Similarly, we evaluated snapshot sizes of 5, 10, and 15 per bucket and determined that a size of 10 yielded the most

stable and accurate results. The learning rate was tuned within the range of 0.001 to 0.1, with 0.01 emerging as the

optimal value for minimizing error rates. Some results from these erosion studies, such as the number of snapshots per

bucket and the number of epochs for the Chickenpox dataset, are presented in Fig. 4. This figure offers a clear justification

for the chosen hyperparameters. This systematic approach ensures that the model's performance is not only reproducible

but also optimized for the given tasks.

 The results of the proposed DGSP-GCN model and baseline methods, including the random method and time series

regression, are summarized in Table 2. The performance metrics used for evaluation include Mean Squared Error (MSE),

Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).

 Table 2 presents the prediction errors for each dataset using different embedding layers within the DGSP-GCN model,

as well as the baseline methods. The A3TGCN embedding layer consistently achieves the lowest error rates across all

datasets. The error rates for the random method and time series regression method are higher than those of the DGSP-

GCN model. The final prediction results of the DGSP-GCN model with the A3TGCN embedding layer are detailed in

Table 3. The average MSE, MAE, and RMSE across all datasets are 0.0645, 0.1781, and 0.2507, respectively. These

values indicate a lower error rate compared to the baseline methods.

 The bar graphs from Fig. 5 show the error rate of the proposed model and baselines based on the results of experiments

in Table 2. Let's discuss the bar graphs related to the dataset of WikiMath as an example; the supplied bar chart denotes

the percentage of error rates of the proposed model and other baselines based on MSE, MAE, and RMSE performance

measures. As an overall trend, the lowest error rates can be observed for the proposed model with the A3TGCN layer.

In contrast, these figures are higher for time series regression and especially for the random method than the others. To

begin with, in MSE, the error rate for the proposed model with embedding layer including GConvGRU, GConvLSTM,

TGCN, AGCRN, and A3TGCN is on an average of well over 10%. Also, the average MAE of the proposed model with

different embedding architectures is almost 28%, and for RMSE, it is almost 34%. In the case of time series regression,

A Deep Learning Framework for Evaluating Dynamic Network Generative Models and Anomaly Detection

168

these figures' percentages are 7%, 7%, and 8% higher than their counterparts in the proposed model with the A3TGCN

embedding layer, respectively. It can also be seen that there is an almost similar trend for the other baseline.

 Finally, after determining the optimal parameters and choosing an architecture for embedding, the final results of the

proposed method can be seen in Table 3 with three dense layers, including 32, 64, and 1 neurons, respectively. We have

used PyTorch [47] and PyTorch Geometric Temporal [48] libraries to implement the proposed model.

Fig 4. Model error on the Chickenpox dataset: The impact of the number of shots per bucket and the number of periods on MSE

Table 2: The prediction results of the proposed model and other baselines
Dataset Method Recurrent layer MSE MAE RMSE

Wiki Math

DGSP-GCN Method

GConvGRU 0.1367 0.3264 0.3598
GConvLSTM 0.1262 0.3091 0.3579

TGCN 0.1117 0.2800 0.3419
AGCRN 0.1220 0.2843 0.3490
A3TGCN 0.1012 0.2624 0.3224

Random Method - 0.1991 0.3676 0.4460
Time series regression Method - 0.1724 0.3523 0.4139

Chickenpox

DGSP-GCN Method

GConvGRU 0.1162 0.3015 0.3442
GConvLSTM 0.1065 0.2683 0.3307

TGCN 0.1067 0.2697 0.3173
AGCRN 0.1043 0.2351 0.3011
A3TGCN 0.0834 0.1797 0.2648

Random Method - 0.2136 0.3789 0.4620
Time series regression Method - 0.1489 0.3273 0.3858

PedalMe

DGSP-GCN Method

GConvGRU 0.0904 0.3120 0.3016
GConvLSTM 0.0889 0.2683 0.3021

TGCN 0.1216 0.2572 0.3489
AGCRN 0.0977 0.2441 0.3125
A3TGCN 0.0768 0.1750 0.2770

Random Method - 0.1871 0.3753 0.4319
Time series regression Method - 0.1420 0.3539 0.3736

MontevideoBus

DGSP-GCN Method

GConvGRU 0.1216 0.3039 0.3470
GConvLSTM 0.0934 0.2595 0.2995

TGCN 0.0900 0.2596 0.3006
AGCRN 0.1163 0.2835 0.3341
A3TGCN 0.0706 0.2038 0.2717

Random Method - 0.1950 0.3685 0.4412
Time series regression Method - 0.1618 0.3284 0.4015

MetraLa

DGSP-GCN Method

GConvGRU 0.0456 0.1519 0.2056
GConvLSTM 0.0668 0.1755 0.2215

TGCN 0.0477 0.1592 0.1845
AGCRN 0.0936 0.2787 0.3150
A3TGCN 0.0549 0.1803 0.2343

Random Method - 0.1859 0.3625 0.4312
Time series regression Method - 0.1536 0.3164 0.3919

January 2024, Volume 1, Issue 2

169

Table 3: The errors of the DGSP-GCN model with the A3TGCN embedding layer

Dataset MSE MAE RMSE

Wiki Math 0.0983 0.2289 0.3176

Chickenpox 0.0502 0.1117 0.2229

PedalMe 0.0629 0.1889 0.2416

MontevideoBus 0.0607 0.1907 0.2463

MetraLa 0.0508 0.1705 0.2253

Fig. 5. The error rates of models for each dataset.

4.4. Discussion

 The experimental results demonstrate that the proposed DGSP-GCN model outperforms existing methods in predicting

similarity within temporal complex networks. The comparison of different embedding layers highlights the effectiveness

of the A3TGCN architecture, which consistently achieves the lowest error rates across all datasets. This improvement

can be attributed to the attention mechanism, which allows the model to dynamically weigh the significance of different

temporal states, leading to more robust and context-aware similarity predictions.

 Each embedding recurrent layer in the architectures of the proposed model has its merits and demerits, and the best

layer to use will depend on our experiments. That is why, according to the results of experiments in Table 2 and Fig. 5,

the performance of the proposed model in the same condition for the A3TGCN layer is almost better than others because

of an attention mechanism layer. This attention-driven strategy enables A3TGCN to capture intricate relationships and

the relative importance of neighboring nodes. As a result, it produces highly informative and context-aware embeddings.

At its core, the attention mechanism allows the model to dynamically assign weights or importance scores to each

neighbor during the aggregation process, considering both local and global information. By adaptively attending to the

most relevant nodes, A3TGCN effectively focuses its attention on the crucial aspects of the graph, emphasizing nodes

that contribute significantly to the target node's representation. This attention-based approach offers several significant

A Deep Learning Framework for Evaluating Dynamic Network Generative Models and Anomaly Detection

170

advantages: firstly, it enables the model to assign higher weights to influential neighbors, thereby capturing the influence

and impact of key nodes in the embedding process. Secondly, it allows A3TGCN to prioritize relevant structural patterns

and dependencies, enhancing its ability to capture complex graph dynamics and characteristics. Thirdly, the attention

mechanism enables the model to handle varying degrees of node importance, such as nodes with high centrality or rare

but impactful nodes, enhancing the robustness and adaptability of the embedding generation process.

 A critical aspect of this study is the comparative analysis with baseline methods, including time series regression and

random similarity assignment. The results indicate that the proposed model significantly reduces error rates compared to

these baselines. The time series regression method, while capable of capturing temporal trends at the node level, lacks

the structural awareness necessary for graph-based similarity predictions. Consequently, it exhibits higher error rates

than DGSP-GCN, particularly in datasets with complex topological dependencies. The random method serves as a lower-

bound benchmark, confirming that the proposed model is meaningfully learning network dynamics rather than producing

arbitrary similarity scores.

 Moreover, the inclusion of multiple embedding architectures provides insights into the trade-offs between different

methods. While GConvGRU, GConvLSTM, and TGCN offer competitive performance, their reliance on recurrent

mechanisms without attention-based refinement limits their ability to prioritize influential nodes. The AGCRN model,

which incorporates adaptive graph convolution, demonstrates notable performance improvements but still falls short of

A3TGCN due to its lack of explicit temporal attention mechanisms.

 One of the key findings is the adaptability of DGSP-GCN across diverse datasets, including WikiMath, Chickenpox,

PedalMe, MontevideoBus, and MetraLa. The model's ability to generalize across varying network structures and

temporal resolutions suggests its robustness in real-world applications. For instance, in the WikiMath dataset, where

node interactions evolve daily, DGSP-GCN effectively captures the subtle changes in graph topology, resulting in lower

MSE and RMSE values. Similarly, in the MetraLa dataset, which features high-frequency temporal updates, the model

maintains its predictive accuracy, showcasing its scalability to different temporal granularities.

 While the datasets used in this study were selected for their diversity in graph-temporal structures, we recognize the

potential for extending the model’s applicability to a broader range of domains. The proposed model’s architecture is not

limited to specific data types and can be applied to other dynamic data, such as social media interactions, financial

transaction networks, or epidemiological data. For example, in the context of social media, nodes could represent users,

and edges could represent interactions, while in financial datasets, nodes might represent accounts and edges the

transactions between them. Future work could include testing the model on such datasets to validate its generalizability

and adaptability across various domains, providing deeper insights into its potential applications.

 In summary, the DGSP-GCN model presents a significant advancement in the evaluation of dynamic network

similarity, outperforming existing approaches in accuracy and adaptability. By leveraging attention mechanisms and

deep graph embeddings, it provides a more nuanced understanding of temporal graph evolution, paving the way for

enhanced applications in anomaly detection, network security, and dynamic system modeling.

5. Conclusion

 There are many different kinds of challenges in complex network modeling based on machine learning, and solving

them improves the performance of network generative models, especially their dynamic counterparts. An automatic

evaluation approach based on deep learning is one of the most effective ways to improve the quality of artificially

produced networks. Dynamic generative models have used statistical approaches of static modeling methods, which is

not optimal due to time dependency in dynamic graph-based structures. Therefore, this paper proposes a deep learning-

based model to solve the challenge of evaluating dynamic generative models. The proposed model contains several

phases, including node and edge embedding. In the case of embedding, we have tested several embedding architectures

like GConvGRU, GConvLSTM, TGCN, AGCRN, and A3TGCN. These architectures contain GCN and recurrent neural

network layers. On the one hand, the GCN is used to capture the graph's topological structure to obtain the spatial

dependence; on the other hand, the recurrent neural network layer is used to capture the dynamic change of node attribute

to obtain the temporal dependence. According to the conducted tests, the A3TGCN performs almost better than other

embedding layers due to having an attention mechanism layer. Besides evaluating dynamic generative models, the

proposed model can also be used in anomaly detection. Our model achieved the best prediction results under different

horizons when evaluated on five real-world datasets and compared with the random and time series regression baselines.

In other words, according to Table 3, the average error rate of the proposed model based on MSE, MAE, and RMSE

performance measures with the A3TGCN embedding layer for the datasets presented in Table 1 are equal to 0.0645,

0.1781, and 0.2507, respectively. In contrast, these averages for the time series regression model based on Table 2 each

are equal to 0.1557, 0.3356, and 0.3933. Also, these values for another baseline, the random model, are separately 0.1961,

0.3623, and 0.4424. The findings of this paper demonstrate the effectiveness of the DGSP-GCN model in evaluating

January 2024, Volume 1, Issue 2

171

dynamic network generative models and detecting anomalies in temporal complex networks. By leveraging attention

mechanisms and deep graph embeddings, the model provides a robust framework for capturing the evolving structural

and temporal dynamics of networks, outperforming traditional methods such as time series regression and random

similarity assignment. These results have significant implications for real-world applications, including network security,

anomaly detection, and dynamic system modeling, where understanding the temporal evolution of networks is crucial.

While the proposed method demonstrates superior performance compared to existing approaches, it is not without

limitations. One key limitation lies in its reliance on temporal graphs with well-structured snapshots, which may not be

readily available for all types of real-world dynamic networks. Additionally, the computational complexity of the

attention mechanism in large-scale graphs may pose challenges for scalability. These issues highlight the need for further

optimization of the model’s architecture to reduce its computational cost and adapt to more irregular or incomplete data.

In light of the findings presented in this study, there are several promising avenues for future research. It would be

valuable to extend the model’s capabilities to handle larger and more diverse datasets, such as real-time financial

transaction networks or social media interactions, where noise and data sparsity are common challenges. Moreover,

integrating adaptive learning techniques to dynamically adjust to evolving network structures could enhance the model’s

performance in highly dynamic and heterogeneous environments. Exploring explainability and interpretability in graph

attention mechanisms is another promising direction to provide deeper insights into the decision-making process of the

model. Last but not least, improving the model's ability to predict similarity for multiple future time steps (i ≥ 1) and

integrating explainability into the attention mechanisms could provide deeper insights and broader applicability in

various domains.

Statements and Declarations

Author Contributions

Alireza Rashnu: Conceptualization, Methodology, Software, Validation, Formal analysis, Theoretical analysis,

Investigation, Data curation, Writing - original draft, Writing – review & editing, Visualization.

Sadegh Aliakbary: Supervision, Writing – review & editing, Methodology, Project administration, Theoretical analysis.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Data Availability

The datasets used during the current study are publicly available via the following links:

1. WikiMath Dataset:

https://raw.githubusercontent.com/benedekrozemberczki/pytorch_geometric_temporal/master/dataset/wikivita

l_mathematics.json

2. Chickenpox Dataset:

https://raw.githubusercontent.com/benedekrozemberczki/pytorch_geometric_temporal/master/dataset/chicken

pox.json

3. PedalMe Dataset:

https://raw.githubusercontent.com/benedekrozemberczki/pytorch_geometric_temporal/master/dataset/pedalm

e_london.json

4. MetraLa Dataset:

https://graphmining.ai/temporal_datasets/METR-LA.zip

5. MontevideoBus Dataset:

https://raw.githubusercontent.com/benedekrozemberczki/pytorch_geometric_temporal/master/dataset/montevi

deo_bus.json

A Deep Learning Framework for Evaluating Dynamic Network Generative Models and Anomaly Detection

172

References

1. Boccaletti S, Bianconi G, Criado R, Del Genio C I, Gómez-Gardenes J, Romance M, Sendina-Nadal I, Wang Z, and
Zanin M (2014) The structure and dynamics of multilayer networks. Physics reports. 544(1): p. 1-122.

2. Albert R (2005) Scale-free networks in cell biology. Journal of cell science. 118(21): p. 4947-4957.
3. Feng M, Li X, Li Y, and Li Q (2023) The impact of nodes of information dissemination on epidemic spreading in

dynamic multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science. 33(4).
4. Sabharwal S M and Aggrawal N (2023) A Survey on Information Diffusion over Social Network with the

Application on Stock Market and its Future Prospects. Wireless Personal Communications. p. 1-27.
5. Yang K, Li J, Liu M, Lei T, Xu X, Wu H, Cao J, and Qi G (2023) Complex systems and network science: a survey.

Journal of Systems Engineering and Electronics. 34(3): p. 543-573.
6. Aliakbary S, Motallebi S, Rashidian S, Habibi J, and Movaghar A (2015) Distance metric learning for complex

networks: Towards size-independent comparison of network structures. Chaos: An Interdisciplinary Journal of
Nonlinear Science. 25(2).

7. Kullback S and Leibler R A (1951) On information and sufficiency. The annals of mathematical statistics. 22(1):
p. 79-86.

8. Gretton A, Borgwardt K M, Rasch M J, Schölkopf B, and Smola A (2012) A kernel two-sample test. The Journal
of Machine Learning Research. 13(1): p. 723-773.

9. Xu K, Hu W, Leskovec J, and Jegelka S (2018) How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826.

10. Bojchevski A, Shchur O, Zügner D, and Günnemann S (2018) Netgan: Generating graphs via random walks. in
International conference on machine learning. of Conference.: PMLR.

11. Lei K, Qin M, Bai B, Zhang G, and Yang M (2019) GCN-GAN: A non-linear temporal link prediction model for
weighted dynamic networks. in IEEE INFOCOM 2019-IEEE conference on computer communications. of
Conference.: IEEE.

12. Goyal P, Chhetri S R, and Canedo A (2020) dyngraph2vec: Capturing network dynamics using dynamic graph
representation learning. Knowledge-Based Systems. 187: p. 104816.

13. Sankar A, Wu Y, Gou L, Zhang W, and Yang H (2020) Dysat: Deep neural representation learning on dynamic
graphs via self-attention networks. in Proceedings of the 13th international conference on web search and data
mining. of Conference.

14. Yang M, Zhou M, Kalander M, Huang Z, and King I (2021) Discrete-time temporal network embedding via
implicit hierarchical learning in hyperbolic space. in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. of Conference.

15. Niknam G, Molaei S, Zare H, Pan S, Jalili M, Zhu T, and Clifton D (2023) DyVGRNN: DYnamic mixture variational
graph recurrent neural networks. Neural Networks. 165: p. 596-610.

16. Nikolentzos G, Siglidis G, and Vazirgiannis M (2021) Graph kernels: A survey. Journal of Artificial Intelligence
Research. 72: p. 943-1027.

17. Ma G, Ahmed N K, Willke T L, and Yu P S (2021) Deep graph similarity learning: A survey. Data Mining and
Knowledge Discovery. 35: p. 688-725.

18. Borgwardt K M and Kriegel H-P (2005) Shortest-path kernels on graphs. in Fifth IEEE international conference
on data mining (ICDM'05). of Conference.: IEEE.

19. Yanardag P and Vishwanathan S (2015) Deep graph kernels. in Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining. of Conference.

20. Sugiyama M and Borgwardt K (2015) Halting in random walk kernels. Advances in neural information processing
systems. 28.

21. Shervashidze N, Schweitzer P, Van Leeuwen E J, Mehlhorn K, and Borgwardt K M (2011) Weisfeiler-lehman
graph kernels. Journal of Machine Learning Research. 12(9).

22. Hido S and Kashima H (2009) A linear-time graph kernel. in 2009 Ninth IEEE International Conference on Data
Mining. of Conference.: IEEE.

23. Grover A and Leskovec J (2016) node2vec: Scalable feature learning for networks. in Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data mining. of Conference.

https://arxiv.org/abs/1810.00826

January 2024, Volume 1, Issue 2

173

24. Nikolentzos G, Meladianos P, and Vazirgiannis M (2017) Matching node embeddings for graph similarity. in
Proceedings of the AAAI Conference on Artificial Intelligence. of Conference.

25. Tixier A J-P, Nikolentzos G, Meladianos P, and Vazirgiannis M (2019) Graph classification with 2d convolutional
neural networks. in Artificial Neural Networks and Machine Learning–ICANN 2019: Workshop and Special
Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19,
2019, Proceedings 28. of Conference.: Springer.

26. Hamilton W L, Ying R, and Leskovec J (2017) Representation learning on graphs: Methods and applications.
arXiv preprint arXiv:1709.05584.

27. Wu B, Liu Y, Lang B, and Huang L (2018) Dgcnn: Disordered graph convolutional neural network based on the
gaussian mixture model. Neurocomputing. 321: p. 346-356.

28. Liu S, Demirel M F, and Liang Y (2019) N-gram graph: Simple unsupervised representation for graphs, with
applications to molecules. Advances in neural information processing systems. 32.

29. Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, and Sun M (2020) Graph neural networks: A review of
methods and applications. AI open. 1: p. 57-81.

30. Zhao W, Li Y, Fan T, and Wu F (2022) A novel embedding learning framework for relation completion and
recommendation based on graph neural network and multi-task learning. Soft Computing. p. 1-13.

31. Dornaika F (2023) Multi-similarity semi-supervised manifold embedding for facial attractiveness scoring. Soft
Computing. 27(8): p. 5099-5108.

32. Wang S and Philip S Y (2019) Heterogeneous graph matching networks: Application to unknown malware
detection. in 2019 IEEE International Conference on Big Data (Big Data). of Conference.: IEEE.

33. Ma G, Ahmed N K, Willke T L, Sengupta D, Cole M W, Turk-Browne N B, and Yu P S (2019) Deep graph similarity
learning for brain data analysis. in Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. of Conference.

34. Lu J, Li S, Guo W, Zhao M, Yang J, Liu Y, and Zhou Z (2023) Siamese Graph Attention Networks for robust visual
object tracking. Computer Vision and Image Understanding. 229: p. 103634.

35. Liu B, Wang Z, Zhang J, Wu J, and Qu G (2024) DeepSIM: a novel deep learning method for graph similarity
computation. Soft Computing. 28(1): p. 61-76.

36. Li S, Li W, Luvembe A M, and Tong W (2023) Graph contrastive learning with feature augmentation for rumor
detection. IEEE Transactions on Computational Social Systems.

37. Tan W, Gao X, Li Y, Wen G, Cao P, Yang J, Li W, and Zaiane O R (2023) Exploring attention mechanism for graph
similarity learning. Knowledge-Based Systems. p. 110739.

38. Seo Y, Defferrard M, Vandergheynst P, and Bresson X (2018) Structured sequence modeling with graph
convolutional recurrent networks. in Neural Information Processing: 25th International Conference, ICONIP
2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part I 25. of Conference.: Springer.

39. Zhao L, Song Y, Zhang C, Liu Y, Wang P, Lin T, Deng M, and Li H (2019) T-gcn: A temporal graph convolutional
network for traffic prediction. IEEE transactions on intelligent transportation systems. 21(9): p. 3848-3858.

40. Bai L, Yao L, Li C, Wang X, and Wang C (2020) Adaptive graph convolutional recurrent network for traffic
forecasting. Advances in neural information processing systems. 33: p. 17804-17815.

41. Bai J, Zhu J, Song Y, Zhao L, Hou Z, Du R, and Li H (2021) A3t-gcn: Attention temporal graph convolutional
network for traffic forecasting. ISPRS International Journal of Geo-Information. 10(7): p. 485.

42. Petluri N and Al-Masri E (2018) Web traffic prediction of wikipedia pages. in 2018 IEEE International Conference
on Big Data (Big Data). of Conference.: IEEE.

43. Rozemberczki B, Scherer P, Kiss O, Sarkar R, and Ferenci T (2021) Chickenpox cases in Hungary: a benchmark
dataset for spatiotemporal signal processing with graph neural networks. arXiv preprint arXiv:2102.08100.

44. Rozemberczki B, Scherer,P., He,Yixuan, Panagopoulos,G., Astefanoaei,M., Kiss,Olivér, Béres,Ferenc,
Collignon,Nicolas, and Sarkar,Rik. (2023) Pedal Me Bicycle Deliveries: UCI Machine Learning Repository.

45. Jagadish H V, Gehrke J, Labrinidis A, Papakonstantinou Y, Patel J M, Ramakrishnan R, and Shahabi C (2014) Big
data and its technical challenges. Communications of the ACM. 57(7): p. 86-94.

46. Hernández D (2017) Public transport, well-being and inequality: coverage and affordability in the city of
Montevideo. CEPAL Review.

https://arxiv.org/abs/1709.05584
https://arxiv.org/abs/2102.08100

A Deep Learning Framework for Evaluating Dynamic Network Generative Models and Anomaly Detection

174

47. Imambi S, Prakash K B, and Kanagachidambaresan G (2021) PyTorch. Programming with TensorFlow: Solution
for Edge Computing Applications. p. 87-104.

48. Rozemberczki B, Scherer P, He Y, Panagopoulos G, Astefanoaei M S, Kiss O, Béres F, Collignon N, and Sarkar R
(2021) PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models.
Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

Alireza Rashnu received his B.Sc. in Computer Engineering (Software Engineering) from Razi

University, Kermanshah, Iran, and his M.Sc. in Software Engineering from Shahid Beheshti University,

Tehran, Iran. His research interests include machine learning, deep learning for computer vision and

natural language processing, complex networks, and AI applications in medicine. He is currently a

research assistant at Shahid Beheshti University.

Sadegh Aliakbary is an assistant professor in Software and Information Systems group at Shahid Beheshti

University, Tehran, Iran. His research interests include social network analysis, data mining, software

architecture and software quality assurance.

