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A B S T R A C T 

Understanding dynamic systems like disease outbreaks, social influence, and information diffusion requires effective 

modeling of complex networks. Traditional evaluation methods for static networks often fall short when applied to 

temporal networks. This paper introduces DGSP-GCN (Dynamic Graph Similarity Prediction based on Graph 

Convolutional Network), a deep learning-based framework that integrates graph convolutional networks with dynamic 

graph signal processing techniques to provide a unified solution for evaluating generative models and detecting 

anomalies in dynamic networks. DGSP-GCN assesses how well a generated network snapshot matches the expected 

temporal evolution, incorporating an attention mechanism to improve embedding quality and capture dynamic structural 

changes. The approach was tested on five real-world datasets: WikiMath, Chickenpox, PedalMe, MontevideoBus, and 

MetraLa. Results show that DGSP-GCN outperforms baseline methods, such as time series regression and random 

similarity assignment, achieving the lowest error rates (MSE of 0.0645, MAE of 0.1781, RMSE of 0.2507). These 

findings highlight DGSP-GCN's effectiveness in evaluating and detecting anomalies in dynamic networks, offering 

valuable insights for network evolution and anomaly detection research. 
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1. Introduction  

Complex network structures are ubiquitous in various real-world systems, ranging from social networks to biological 

systems and technological infrastructures [1]. Studying these networks has become increasingly important in recent years 

as they provide opportunities to understand the behavior and dynamics of complex systems [2]. In particular, the analysis 

of complex networks has been used to gain insights into a wide range of phenomena, including the spread of diseases [3] 

and the diffusion of information [4]. Network generation models are a powerful tool for understanding, analyzing, 

simulating, and designing complex systems that can be represented as networks. Network modeling plays a crucial role 

in helping us understand the intricate structure and organization of interconnected systems with the aim of understanding 

how the system functions and responds to different perturbations. By modeling the dynamics of complex systems, we 

can simulate and analyze how information, influence, or phenomena spread through the network like epidemics [5]. 

    On the other hand, evaluating the output of network generative models can be difficult because there is no clear 

objective measure of what constitutes a "good" output. Unlike discriminative models, where the output can be evaluated 

based on its accuracy in predicting a known label or class, generative models are designed to create new data similar to 

the training data. This means that any specific criteria do not necessarily constrain the output of a generative model and 

can be highly subjective. Furthermore, generative models often produce probabilistic outputs, meaning that the same 

input can result in different outputs each time the model is executed. This makes it difficult to compare the output of a 

generative model to a ground truth dataset, as there may be multiple valid outputs for a given input. As a result, evaluating 
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the output of generative models often requires a combination of quantitative and qualitative analysis and human 

judgment. Generally, researchers have used three approaches to evaluate the output of network generative models: 

1) The structural features of an artificial graph (such as the degree distribution, the clustering coefficient distribution, 

and transitivity) and its real counterpart are compared [6-8].  

2) Indirect assessment. A classification model is trained with real graphs and tested with generated graphs. If the artificial 

graph is similar to the target graph, the classification model gives a score of one; otherwise, a zero score is received 
[9].  

3) Quality-based approach. The identical edges in the structure of the generated graph and the real graph are kept constant 

for model evaluation. In contrast, the other links of the synthetic graph nodes are changed randomly. In this case, if 

the statistical parameters of the synthetic graph, such as degree distribution, density, diameter, etc., do not change 

compared to the real graph, the generating model has shown good performance [10]. 

    Although these methods are inherently designed for evaluating static graph generative models, some dynamic 

generative models have used them for model evaluation [11-15]. Dynamic networks change; therefore, evaluation 

methods designed for static networks may not be suitable. For example, metrics that measure the centrality of nodes in a 

static network may not be useful for understanding the dynamics of a network over time because it will not necessarily 

have a fixed value.  

   Temporal networks, characterized by their evolving connections over time, introduce a layer of complexity beyond 

traditional static network models. Predicting node status within such dynamic contexts necessitates a nuanced 

understanding of how graph similarity, often explored in static settings, translates to temporal dynamics. Our research 

addresses this critical gap by elucidating the interconnectedness between graph similarity metrics and the evolving states 

of nodes in temporal networks. By leveraging insights from graph similarity learning, we discern patterns in temporal 

network dynamics that influence node status predictions. Our approach acknowledges the dynamic nature of real-world 

systems, where nodes interact and evolve over time, rendering traditional static analyses insufficient for capturing the 

full spectrum of network behaviors. Furthermore, our work recognizes the limitations of existing evaluation methods 

designed primarily for static graph generative models when applied to dynamic network settings. 

   In this paper, we consider the challenge of evaluating dynamic complex network generative models' output using 

different graph embedding mechanisms, recurrent neural networks (RNN), and fully connected layers. In other words, 

given the history of a dynamic network and a new snapshot, the proposed model called DGSP-GCN (Dynamic Graph 

Similarity Prediction based on Graph Convolutional Network) predicts how likely the hypothetical snapshot will be the 

future of the same temporal network. While it is true that DGSP-GCN leverages existing embedding methods, its 

contribution lies in the novel synthesis, customization, and application of these techniques within a unified framework 

tailored for dynamic graph node-level similarity prediction. Our experiments illustrate that the proposed model 

outperforms the baselines. The main contributions of this paper are as follows: 

1) A Deep Learning-Based Evaluation Method for Dynamic Network Generative Models: We introduce DGSP-GCN, a 

graph convolutional network-based approach that effectively captures both spatial and temporal dependencies in 

dynamic graphs. This enables a robust and accurate assessment of the quality of generated dynamic networks; 

2) A Unified Framework for Anomaly Detection in Temporal Complex Networks: Our proposed method not only 

evaluates the fidelity of synthetic networks but also detects anomalies in real-world temporal graphs by leveraging 

dynamic graph signal processing techniques. This provides a versatile and effective tool for analyzing evolving 

network structures; 

3) Empirical Validation on Real and Synthetic Datasets: We evaluate DGSP-GCN on multiple benchmark datasets, 

demonstrating its superiority in both evaluating generative models and detecting anomalies in dynamic graphs. Our 

results confirm that DGSP-GCN outperforms existing baselines in predictive accuracy and robustness.   

   The rest of this paper is organized as follows: Section 2 reviews the state-of-the-art graph similarity prediction models. 

In Section 3, the problem statement is presented. Section 4 illustrates our proposed method. Section 5 shows the 

experimental evaluations. Finally, section 6 concludes and explains the future works.   

2. Literature review 

    In the vast realm of data analysis, understanding the unique attributes and relationships within complex structures has 

appeared as a paramount challenge. Within this context, graph similarity learning has emerged as an intriguing avenue, 

enabling researchers to uncover hidden correlations, discover underlying patterns, and extract valuable insights from 

interconnected data. The primary goal of graph similarity learning is to develop effective techniques that capture the 

inherent similarities and dissimilarities between graphs [16]. We can discern their structural, topological, and semantic 

characteristics by measuring the similarity between graphs. This holistic understanding allows us to categorize graphs 

more accurately, identify anomalies, and better understand their underlying dynamics [17]. For instance, in social 

network analysis, graph similarity learning can help identify communities or clusters of individuals with similar social 
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connections. Moreover, graph similarity learning has applications in recommendation systems, which can be used to 

identify similar users or items based on their interconnected relations. 

    In summary, graph similarity learning is a vital tool in data analysis, allowing us to unlock hidden insights, understand 

complex structures, and make informed decisions in various domains. Our work aims to reconcile the realms of graph 

similarity learning with the intricacies of temporal network dynamics, shedding light on evolving system states and 

facilitating predictive insights into node behaviors. Generally, graph similarity learning approaches are divided into 

categories, including graph kernels, graph embedding methods, and graph neural networks (GNN). We will examine 

each one below. 

2.1. Methods based on graph kernels 

   A graph kernel is a function that measures the similarity between two graphs by mapping them into a high-dimensional 

feature space. Graph kernels are commonly used in machine-learning tasks involving graph-structured data [18]. The 

basic idea behind graph kernels is to define a function that maps each graph into a vector of features that capture its 

structural properties. The similarity between the two graphs can then be computed as the inner product of their feature 

vectors in the high-dimensional space [19]. 

   There are many different types of graph kernels, each with its strengths and weaknesses. Some popular graph kernels 

include the random walk kernel [20], the subtree kernel [21], and the neighborhood hash kernel [22]. The choice of kernel 

depends on the specific application and the properties of the graphs being analyzed. While graph kernel methods have 

many advantages, they also face several challenges that must be carefully considered when applying them to real-world 

problems [16]. Here are some of the main challenges:  

• Computational Complexity: Graph kernel methods can be computationally expensive, especially for large 

graphs. Since these methods involve comparing graphs based on structural or topological properties, the 

computations can become time-consuming and resource-intensive as the size of the graphs increases. This can 

limit their scalability and efficiency in handling large-scale graph datasets. 

• Kernel Choosing: There are many different types of graph kernels, each with its own strengths and weaknesses. 

Choosing the right kernel for a particular problem can be challenging, and there is often no clear best choice.  

• Sensitivity to Graph Representations: Graph kernel methods heavily rely on the representations of graphs, such 

as node or edge labels, that are provided as input. Small changes or variations in these representations may lead 

to significantly different kernel values, affecting the similarity measures between graphs. 

2.2. Graph embedding methods  

    Graph embedding methods for similarity are techniques used to represent graphs as low-dimensional vectors, which 

can be used to measure similarity between graphs. These methods aim to capture the structural and semantic information 

of the graph in the embedding space, such that similar graphs are mapped to nearby points in the embedding space. There 

are various graph embedding methods for similarity, including node and graph embedding methods. In the case of node 

embedding, the aim is a representation of each node to a vector by some methods like node2vec [23, 24], which can be 

aggregated to obtain an embedding for the entire graph [25]. Graph embedding methods aim to directly learn the 

representation of the entire graph by considering the graph structure like [26-28]. However, there are several challenges 

associated with graph embedding methods, including [17]: 

• Heterogeneity: Graphs can be heterogeneous, containing different nodes and edges. Embedding methods need 

to handle this heterogeneity and capture the relationships between different types of nodes and edges. 

• Structure-oriented: Although structural features such as node degree distribution, clustering coefficient 

distribution, number of triangles, network diameter, etc., are used to generate vectors at the node and graph 

levels, the node and edge level features are not considered for embedding.  

• Loss of Graph Structure Interpretability: Embedding methods aim to represent graphs in low-dimensional vector 

spaces. While this enables numerical comparisons and similarity metrics, it can lead to a loss of interpretability 

in terms of the original graph structure. The transformed representations may not directly reveal the inherent 

graph properties and relationships, making comprehending the reasons behind similarity or dissimilarity scores 

challenging. 

2.3. GNN-based methods 

    GNN methods are a class of machine learning techniques that have emerged as powerful tools for graph similarity 

prediction. By leveraging their ability to capture and learn from complex graph structures, GNNs offer a promising 

approach for comparing the similarity of different graphs. Through a series of iterative aggregation and transformation 

steps, GNNs can effectively encode the inherent structural properties of graphs into low-dimensional representations, 

commonly referred to as node or graph embeddings [29-31]. Not only do these learned embeddings encapsulate the 

topological relationships and attributes of individual nodes, but they also capture the global structural patterns and 
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dependencies present in the graph as a whole. By harnessing the expressive power of GNNs, graph similarity prediction 

can benefit from the rich representations learned by the network, facilitating more accurate and nuanced comparisons 

between complex and heterogeneous graph structures in diverse domains.  

    One popular approach for graph similarity prediction using GNNs is to use Siamese networks [32-35], which consist 

of two identical GNNs that take in two different graphs as input and output a similarity score. The two GNNs share the 

same weights, allowing them to learn a common representation of the graphs. Another approach is to use a contrastive 

loss function, which encourages the GNN to learn representations that are close together for similar graphs and far apart 

for dissimilar graphs [36]. This can be combined with a Siamese network architecture to learn a similarity function. Other 

GNN-based approaches for graph similarity prediction include using attention mechanisms to focus on important 

substructures within the graphs [37]. While Graph Neural Network (GNN) based methods have shown promising results 

in graph similarity learning, they also have a few disadvantages.  

Here are some of them [17]:   

• Computational Complexity: GNNs can be computationally expensive, especially for large graphs with a high 

number of nodes and edges. The complexity increases as the graphs' size and complexity grow, making it 

challenging to scale GNN-based methods to large-scale graph similarity learning tasks. 

• Interpretability and Explainability:  The complex nature of the GNN architecture makes it challenging to 

understand how and why certain patterns are learned and used for similarity comparisons. Interpreting the 

decisions made by GNN-based models can be difficult. 

3. Proposed method  

3.1. Problem statement 

    With the help of synthesized networks, we can represent complex systems through graph structure. The node's 

connections in real networks are a specific and meaningful pattern. Therefore, the corresponding synthesized network 

should match the real network. Put differently, the closer the synthetic network is to the target network, the more precise 

the outcomes of different tests conducted on the synthetic networks will be. 

    If 𝔾 is a dynamic complex network and its snapshots contain {𝐺1, 𝐺2,…, 𝐺𝑇}, then the problem is to predict the 

similarity of a network 𝐺𝑟 (perhaps a synthesized graph) with 𝐺𝑇+1 of 𝔾. To formalize this prediction task, Eq. (1) 

introduces the inputs and output of the problem, where  f  is a function that takes in the sequence {𝐺1, 𝐺2,…, 𝐺𝑇} and 𝐺𝑟 

to compute the similarity and S(𝐺𝑇+1,𝐺𝑟) is the similarity between 𝐺𝑇+1and 𝐺𝑟. We assume that the considered networks 

are static graph-temporal signals. This implies that the arrangement of the network remains constant throughout time, 

but the attributes of the network nodes alter over time. 

 
𝑓({𝐺1, 𝐺2, … , 𝐺𝑇}, 𝐺𝑟) = 𝑆(𝐺𝑇+1, 𝐺𝑟)                               (1) 

 

    One of the paramount applications of predicting the similarity between evolving network states lies in anomaly 

detection within dynamic complex networks. Sudden deviations in the similarity score of 𝑓({𝐺1, 𝐺2, … , 𝐺𝑇}, 𝐺𝑇+1) might 

indicate potential anomalies, such as malicious activities or unexpected patterns. Consequently, leveraging this 

similarity-based approach offers a proactive mechanism to identify and mitigate threats or disruptions in dynamic 

network environments. Furthermore, this predictive framework is pivotal in evaluating the efficacy and performance of 

dynamic generative models. Generative models that emulate and reproduce complex networks' structural and temporal 

characteristics necessitate rigorous evaluation metrics. Researchers and practitioners can quantitatively assess dynamic 

generative models' fidelity, robustness, and generalization capabilities by juxtaposing the predicted similarity scores with 

ground truth or benchmark snapshots. Such evaluations ensure that generative models capture essential temporal 

dynamics, structural nuances, and emergent behaviors inherent to real-world complex networks, thereby fostering 

advancements in network synthesis, simulation, and reconstruction methodologies.  
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Algorithm 1. Algorithm of noise injection approach 

Input: Buckets # 𝐁𝐮𝐜𝐤𝐞𝐭𝒊={𝐆𝟎, 𝐆𝟐,…, 𝐆𝑻, 𝐆𝒓} 

Output: List of labels, Buckets 

1. Dictionary ←{} 

2. List_of_labels[len(Buckets)] ←{1} 

3. Number_of_nodes ← len(Buckets[0][0].nodes) 

4. for i=0 to Number_of_nodes do 

5.      Dictionary[i] ←[0.0] 

6. for bucket : Buckets do 

7.      for node = 0 to Number_of_nodes do 

8.          if min(bucket[node]) < Dictionary[node][0] then 

9.              Dictionary[node][0] ← min(bucket[node]) 

10.          if max(bucket[node]) > Dictionary[node][1] then 

11.              Dictionary[node][1] ← max(bucket[node]) 

12. Index_of_randomly_selected_buckets ← random(range(0, len(Buckets) - 1), 

random(range(0, len(Buckets) - 1), 1)) 

13. for bucket_index : Index_of_randomly_selected_buckets do 

14.      Number_of_randomly_selected_nodes ← random(range(0, len(Buckets[0][0].nodes) 

- 1), 1) 

15.      Index_of_randomly_selected_nodes ← random(range(0, len(Buckets[0][0].nodes)-

1), Number_of_randomly_selected_nodes) 

16.      List_of_labels[Bucket_index] ← 1− (Number_of_randomly_selected_nodes / 

(len(Buckets[0][0].nodes))) 

17.      for node_index :  Index_of_randomly_selected_nodes do 

18.          Buckets[bucket_index][node_index].node_feature[-1] ← 

random(Dictionary[node_index][0], Dictionary[node_index][1]) 

 

 
Fig. 1. The process of preparing datasets with the help of the noise injection approach to train the proposed model.  

 

3.2. Noise injection approach 

    Referring to Eq. (1), when 𝐺𝑟 aligns perfectly with 𝐺𝑇+1, the resultant similarity metric will be unity (i.e., S (𝐺𝑇+1,𝐺𝑟) 

= 1). Conversely, any divergence or alteration in 𝐺𝑟 leads to a proportional decrement in the similarity value. To illustrate, 

if 𝐺𝑟 undergoes a 20% modification, the similarity is quantified as S (𝐺𝑇+1,𝐺𝑟) = 0.8. Motivated by this foundational 

understanding, we harness the concept of noise injection to curate a comprehensive training dataset for our deep learning-

based model, denoted as f. This research's datasets encompass distinct temporal snapshots organized into various buckets. 

We systematically introduce varied noise levels into 𝐺𝑟 within these buckets, representing the terminal snapshot. 

Subsequently, we delineate the label for each bucket predicated on the computed similarity distance, thereby facilitating 

a robust training paradigm for our predictive model. Fig. 1 and Algorithm 1 illustrate the noise injection approach. First 

of all, we assign a Y = 1 similarity label to each of the buckets of datasets, which shows the degree of complete similarity 

of the last snapshot with its real state. Then, we randomly select several buckets. Next, some nodes are randomly selected, 
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like nodes 3, 4, and 5 in Fig.1, and to inject a logical noise, a random value between the minimum and maximum value 

that the node has in the entire dataset is replaced by the last feature of the node. Finally, the bucket similarity label is 

calculated using Eq. (2). 

𝑌𝐵𝑢𝑐𝑘𝑒𝑡[𝑖] =  1  -    
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑛𝑜𝑑𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
                (2) 

3.3. DGSP-GCN method 

    In this study, we introduce DGSP-GCN, a novel deep learning-based framework that integrates dynamic graph signal 

processing (DGSP) techniques with GCNs for the evaluation of generative models and anomaly detection in temporal 

complex networks. The datasets used in this research are dynamic complex networks, requiring the integration of GNNs 

and RNNs to effectively capture both spatial and temporal dependencies. The GNN layers enable the network to learn 

node and graph representations by propagating information across neighboring nodes, preserving both local and global 

structural relationships. This is achieved through an iterative message-passing mechanism, where each node aggregates 

information from its neighbors to update its representation. 

Fig. 2 illustrates the architecture of our proposed DGSP-GCN model, which consists of four main stages: 

1. Graph Embedding via GCN 

• Each snapshot of the temporal network is processed using a GCN layer to generate 32-dimensional 

embeddings for nodes and edges. 

• This transformation captures the structural properties of the graph while preserving connectivity 

information. 

2. Temporal Feature Extraction via RNNs 

• The sequence of graph embeddings from multiple snapshots is passed through an RNN layer (e.g., LSTM 

or GRU). 

• This step models the evolution of node relationships over time, capturing temporal dependencies in the 

dynamic network. 

3. Graph-Level Representation via Mean Pooling 

• A mean pooling layer aggregates node-level embeddings into a compact representation of the entire 

graph sequence. 

• This enables the model to perform similarity forecasting at the graph level. 

 

4. Similarity Prediction via Multilayer Perceptron (MLP) 

• The pooled representation is passed through a three-layer MLP with 32, 64, and 1 neurons, respectively. 

• The final output is a predicted similarity score for the last snapshot 𝐺𝑟 relative to previous snapshots 𝐺1 

to 𝐺𝑇 , 
• The snapshot 𝐺𝑟 corresponds to 𝐺𝑇+1 in the input bucket, where 50% noise injection is applied during 

training to enhance model robustness. 

The similarity prediction process by the proposed method is outlined in Algorithm 2. This structured approach ensures 

that both spatial and temporal relationships within dynamic graphs are captured effectively, improving the accuracy of 

generative model evaluation and anomaly detection. 

    To develop the most effective model architecture, we conducted extensive experimental comparisons using different 

node embedding techniques, including: 

1) GConvGRU (Graph Convolutional Gated Recurrent Unit) [38]. It consists of multiple layers of GConvGRU cells. 

Each cell has two main components: a GCN layer and the Gated Recurrent Unit (GRU) layer.  

2) GConvLSTM (Graph Convolutional Long Short-Term Memory) [38]. It combines the GCN and long short-term 

memory (LSTM) networks to capture both spatial and temporal dependencies in the graph data.  

3) TGCN (Temporal Graph Convolutional Network) [39]. Its architecture comprises several layers, such as GCN, GRU, 

and temporal pooling. 

4) AGCRN (Adaptive Graph Convolutional Recurrent Network) [40]. It consists of two main components, including 

gated convolutional layers and recurrent units, to effectively capture spatial and temporal dependencies in the data.  

5) A3TGCN (Attention Temporal Graph Convolutional Network) [41]. The A3T-GCN employs a soft attention 

mechanism to calculate the importance of each hidden state from the historical time points and to generate a context 

vector that encapsulates global temporal variations. The attention mechanism consists of the following key steps and 

equations: 
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1. Score Calculation: A scoring function is used to compute the score 𝑒𝑖, Eq. (3), for each hidden state ℎ𝑖 at time 

i. The score measures the relevance of ℎ𝑖 to the prediction task. In the A3TGCN, a two-layer perceptron is 

used for this purpose:  

𝑒𝑖 =  𝑤(2), 𝑅𝑒𝐿𝑈(𝑤(1) + 𝑏(1)) + 𝑏(2)              (3)  
 

Here:  

• 𝑤(1) and 𝑏(1) are the weight and bias for the first layer.  

•  𝑤(2) and 𝑏(2) are the weight and bias for the second layer.  

• ReLU is the rectified Linear Unit activation function.  

2. Weight calculation: The scores 𝑒𝑖 are normalized using a Softmax function to compute the attention weights 

α𝑖, Eq. (4). This ensures the weights sum to 1, representing the relative importance of each hidden state:  

                 α𝑖 =  
exp(𝑒𝑖)

∑ exp(𝑒𝑘)𝑛
𝑘=1

                     (4) 

 

Here, n is the total number of time points in the historical sequence.  

 

3.   Context Vector: According to the Eq. (5), the context vector 𝐶𝑡 is calculated as a weighted sum of the hidden 

states, where the weights α𝑖 represent the importance of each state:  

         C𝑡 =  ∑ α𝑖 ,  h𝑖

𝑛

𝑖−1

            (5) 

The context vector 𝐶𝑡 summarizes the global temporal variation information, which is then used in subsequent 

layers for prediction.  

These equations allow the A3TGCN to dynamically adjust the influence of different time points, enabling it to 

better capture long-term dependencies and improve forecasting accuracy. 

    Through a series of controlled experiments in Section 4 (Experiments), we find that the A3T-GCN architecture 

consistently outperforms other alternatives in terms of both predictive accuracy and computational efficiency when 

integrated with dynamic graph signal processing techniques. As a result, we adopt the A3T-GCN architecture as the core 

of our DGSP-GCN framework, ensuring that it effectively captures evolving graph structures while maintaining 

computational feasibility. 

 
Fig. 2. The architecture of DGSP-GCN model     
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Algorithm 2. Algorithm of DGSP-GCN 

Input: Bucket  # 𝐁𝐮𝐜𝐤𝐞𝐭𝒊 = {𝐆𝟎, 𝐆𝟐,…, 𝐆𝑻, 𝐆𝒓} 

Output: Y_hat # (predicted similarity between 𝐆𝑻+𝟏 and 𝐆𝒓) 

1. Vectors_of_nodes ← [] 

2. for snapshot :  Bucket.snapshots do 

3.      Node_embedding_list ← [] 

4.      for node : snapshot.nodes do 

5.          Node_embedding_list.append(graph_convolution_layer(snapshot))  # 32-

dimensional vector for each node 

6.      Vectors_of_nodes.append(recurrent_neural_network(Node_embedding_list) 

# recurrent neural network like LSTM 

7. Vector_of_bucket ← 0 

8. for vector : Vectors_of_nodes do 

9.      Vector_of_bucket ←\gets← Vector_of_bucket + vector 

10. Y_hat{Y} ← dense_layer_with_32neurons(Vector_of_bucket / 

len(Vectors_of_nodes)) 

11. Y_hat{Y} ← dense_layer_with_64neurons(Y_hat) 

12. Y_hat{Y} ← dense_layer_with_1neuron(Y_hat{Y}) 

 

3.4. The performance measures   

    Evaluating machine learning models is crucial in assessing their performance and effectiveness. The choice of 

appropriate evaluation metrics holds immense importance due to objective assessment. In other words, evaluation metrics 

provide an objective and standardized way of measuring and comparing model performance. To evaluate the performance 

of our regression model, it is common to use Eq. (6), Eq. (7), and Eq. (8), where N is the number of samples, Y is the 

real label, and 𝐘 is the label predicted by the model.  

 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸) =  
1

𝑁
 ∑ (𝑌 − �̂�)

2𝑁

𝑖=1
                (6) 

 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) =  
1

𝑁
 ∑ |(𝑌 −  �̂�)|

𝑁

𝑖=1
             (7) 

 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) =  √
1

𝑁
 ∑ (𝑌 −  �̂�)

2𝑁

𝑖=1
        (8) 

   Giving higher weights to larger errors is one of the advantages of MSE, thereby indicating the importance of reducing 

significant deviations. Nevertheless, one disadvantage of it is that it squares the errors, which can lead to an amplification 

of the impact of outliers. On the other hand, although MAE is less sensitive to outliers and provides a robust measure of 

error, it may not fully capture the relative importance of different errors. However, RMSE combines the benefits of both 

MSE and MAE by calculating the square root of the average squared difference between predicted and actual values. 

Therefore, with the help of these measures, we can evaluate the performance of the proposed model in different aspects.  

4. Experiments  

4.1. Evaluation methods  

    In order to comprehensively assess the performance of our model, we conducted a thorough comparative analysis 

against a set of baselines. This evaluation methodology allows us to gauge the effectiveness and superiority of our 

proposed approach in tackling the given problem. However, previous methods in graph comparison are limited to static 

graphs, while the datasets used in this research are temporal. That is why we have presented two baselines, including 

time series regression and random methods, to compare the performance of the proposed model. In the case of the random 

method, a random number between zero and one is generated as �̂� for each sample of the test dataset. Although the 

random method's performance is not impressive, it does assure us that our proposed model for similarity prediction is 

not performing worse than the least effective baseline. Another baseline idea we presented is the use of time series 

regression. Fig. 3 and Algorithm 3 describe the process of similarity prediction. In this case, a regression model is trained 

for each node in every sample of the test dataset. The model gets the features of the node from snapshots 1 to T-1 to 
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predict its feature for the next snapshot. In other words, this model predicts the last feature for each node after receiving 

n-1 previous features of the node. Eventually, the amount of �̂�𝐵𝑢𝑐𝑘𝑒𝑡[𝑖] calculate based on Eq. (9). 

 

�̂�𝐵𝑢𝑐𝑘𝑒𝑡[𝑖] =  
1

𝑚
 ∑ 1 −  |𝑌𝑗 −  �̂�𝑗|

𝑚

𝑗=1
               (9) 

 

Where m is the number of nodes in each sample, 𝑌j is the real label of the node of the last snapshot and �̂�j is the predicted 

label by the time series regression model. The absolute difference between these two values represents the amount of 

noise injected into the last feature of each bucket node. 

 
Fig. 3. The process of time series regression for prediction of bucket's label for each sample of the test dataset. 

Algorithm 3. Algorithm of time series regression method 

Input: Buckets 

Output: Y_hat 

1. Time ← [] 

2. for i : list(range(len(Buckets[0].node[0].feature) - 1)) do 

3.      Time.append(i) 

4. Y_hat ← [] 

5. for bucket : Buckets do 

6.      List_Y_hat_nodes ← [] 

7.      List_Y_test_nodes ← [] 

8.      for node_features : range(len(bucket.node)) do 

9.          node_features ← min_max_normalization(node_features) 

10.          LinearRegression.fit(Time, node_features[0:-1]) 

11.          List_Y_hat_nodes.append(LinearRegression.predict(Time[-

1]+1)) 

12.          List_Y_test_nodes.append(node_features[-1]) 

13.          Noise_list ← [] 

14.          for j : range(len(List_Y_test_nodes)) do 

15.              Noise_list.append(1 - absolute(List_Y_test_nodes[j] - 

List_Y_hat_nodes[j])) 

16.      Y_hat.append(mean(Noise_list)) 

4.2. Data description   

        This section emphasizes a robust and comprehensive data description to provide a solid foundation for our research 

findings and analysis. Data plays a crucial role in shaping the outcomes of any study, and by thoroughly understanding 

the datasets used, we can ensure the validity and reliability of our results. Therefore, we use five real-world available 

datasets, which are a kind of static graph-temporal signals. They include the following: 
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1) WikiMath [42]. This is a collection of important math articles from Wikipedia, presented as a graph where each page 

is a vertex and links between them are edges. The weight of each edge represents the number of links from the source 

page to the target page. The target is the number of daily visits to these pages.  

2) Chickenpox [43]. This is a collection of information about chickenpox cases in Hungary. The data includes the number 

of chickenpox cases each week, where each city is a vertex and the road between them an edge.  

3) PedalMe [44]. This is a dataset of Bicycle deliveries in London. The data is represented as a graph, where different 

areas are the vertices, and the connections between them are the edges. The vertex features show the number of 

deliveries requested each week.  

4) MetraLa [45]. This dataset predicts traffic patterns in the Los Angeles Metropolitan area. The data was gathered from 

207 loop detectors on highways throughout Los Angeles County.  

5) MontevideoBus [46]. This dataset contains information about the number of passengers who boarded buses at various 

stops in Montevideo city. The weight of these connections represents the distance between stops.  

These datasets are summarized in Table 1. To train and evaluate our proposed model for each dataset, we use the cross-

validation method with K=3.  

Table 1: The used datasets in our experiments.  

Dataset #Nodes #Edges #Snapshots Frequently 

WikiMath 1068 27079 731 Daily 

Chickenpox 20 102 520 Weekly 

PedalMe 15 225 30 Weekly 

MetraLa 207 1722 3224 5-Minutes 

MontevideoBus 678 690 734 1-Hours 

4.3. Experimental result   

    The hyperparameters used in our experiments were set as follows: the number of epochs was 30, the number of 

snapshots per bucket was 10, the node embedding dimension was 32, and the learning rate was 0.01. The experiments 

were conducted on five real-world datasets: WikiMath, Chickenpox, PedalMe, MontevideoBus, and MetraLa. 

    To ensure the robustness and optimal performance of the proposed DGSP-GCN model, we conducted extensive 

ablation studies to evaluate the impact of key hyperparameters, including the number of epochs, snapshot size per bucket, 

node embedding dimension, and learning rate. These studies were performed across all datasets to identify the most 

effective configuration for the model. For instance, we tested embedding dimensions of 16, 32, and 64 and found that a 

dimension of 32 consistently provided the best balance between computational efficiency and predictive accuracy. 

Similarly, we evaluated snapshot sizes of 5, 10, and 15 per bucket and determined that a size of 10 yielded the most 

stable and accurate results. The learning rate was tuned within the range of 0.001 to 0.1, with 0.01 emerging as the 

optimal value for minimizing error rates. Some results from these erosion studies, such as the number of snapshots per 

bucket and the number of epochs for the Chickenpox dataset, are presented in Fig. 4. This figure offers a clear justification 

for the chosen hyperparameters. This systematic approach ensures that the model's performance is not only reproducible 

but also optimized for the given tasks. 

    The results of the proposed DGSP-GCN model and baseline methods, including the random method and time series 

regression, are summarized in Table 2. The performance metrics used for evaluation include Mean Squared Error (MSE), 

Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). 

    Table 2 presents the prediction errors for each dataset using different embedding layers within the DGSP-GCN model, 

as well as the baseline methods. The A3TGCN embedding layer consistently achieves the lowest error rates across all 

datasets. The error rates for the random method and time series regression method are higher than those of the DGSP-

GCN model. The final prediction results of the DGSP-GCN model with the A3TGCN embedding layer are detailed in 

Table 3. The average MSE, MAE, and RMSE across all datasets are 0.0645, 0.1781, and 0.2507, respectively. These 

values indicate a lower error rate compared to the baseline methods. 

    The bar graphs from Fig. 5 show the error rate of the proposed model and baselines based on the results of experiments 

in Table 2. Let's discuss the bar graphs related to the dataset of WikiMath as an example; the supplied bar chart denotes 

the percentage of error rates of the proposed model and other baselines based on MSE, MAE, and RMSE performance 

measures. As an overall trend, the lowest error rates can be observed for the proposed model with the A3TGCN layer. 

In contrast, these figures are higher for time series regression and especially for the random method than the others. To 

begin with, in MSE, the error rate for the proposed model with embedding layer including GConvGRU, GConvLSTM, 

TGCN, AGCRN, and A3TGCN is on an average of well over 10%. Also, the average MAE of the proposed model with 

different embedding architectures is almost 28%, and for RMSE, it is almost 34%. In the case of time series regression, 
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these figures' percentages are 7%, 7%, and 8% higher than their counterparts in the proposed model with the A3TGCN 

embedding layer, respectively. It can also be seen that there is an almost similar trend for the other baseline. 

    Finally, after determining the optimal parameters and choosing an architecture for embedding, the final results of the 

proposed method can be seen in Table 3 with three dense layers, including 32, 64, and 1 neurons, respectively. We have 

used PyTorch [47] and PyTorch Geometric Temporal [48] libraries to implement the proposed model.  

 
Fig 4. Model error on the Chickenpox dataset: The impact of the number of shots per bucket and the number of periods on MSE 

 

Table 2: The prediction results of the proposed model and other baselines 
Dataset Method Recurrent layer MSE MAE RMSE 

 
 

Wiki Math 

 
 

DGSP-GCN Method 

GConvGRU 0.1367 0.3264 0.3598 
GConvLSTM 0.1262 0.3091 0.3579 

TGCN 0.1117 0.2800 0.3419 
AGCRN 0.1220 0.2843 0.3490 
A3TGCN 0.1012 0.2624 0.3224 

Random Method - 0.1991 0.3676 0.4460 
Time series regression Method - 0.1724 0.3523 0.4139 

 
 
 

Chickenpox 

 
 
 

DGSP-GCN Method 

GConvGRU 0.1162 0.3015 0.3442 
GConvLSTM 0.1065 0.2683 0.3307 

TGCN 0.1067 0.2697 0.3173 
AGCRN 0.1043 0.2351 0.3011 
A3TGCN 0.0834 0.1797 0.2648 

Random Method - 0.2136 0.3789 0.4620 
Time series regression Method - 0.1489 0.3273 0.3858 

 
 

PedalMe 

 
 
 

DGSP-GCN Method 

GConvGRU 0.0904 0.3120 0.3016 
GConvLSTM 0.0889 0.2683 0.3021 

TGCN 0.1216 0.2572 0.3489 
AGCRN 0.0977 0.2441 0.3125 
A3TGCN 0.0768 0.1750 0.2770 

Random Method - 0.1871 0.3753 0.4319 
Time series regression Method - 0.1420 0.3539 0.3736 

 
 

MontevideoBus 

 
 
 

DGSP-GCN Method 

GConvGRU 0.1216 0.3039 0.3470 
GConvLSTM 0.0934 0.2595 0.2995 

TGCN 0.0900 0.2596 0.3006 
AGCRN 0.1163 0.2835 0.3341 
A3TGCN 0.0706 0.2038 0.2717 

Random Method - 0.1950 0.3685 0.4412 
Time series regression Method - 0.1618 0.3284 0.4015 

 
 
 

MetraLa 

 
 
 

DGSP-GCN Method 

GConvGRU 0.0456 0.1519 0.2056 
GConvLSTM 0.0668 0.1755 0.2215 

TGCN 0.0477 0.1592 0.1845 
AGCRN 0.0936 0.2787 0.3150 
A3TGCN 0.0549 0.1803 0.2343 

Random Method - 0.1859 0.3625 0.4312 
Time series regression Method - 0.1536 0.3164 0.3919 
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Table 3: The errors of the DGSP-GCN model with the A3TGCN embedding layer 

Dataset MSE MAE RMSE 

Wiki Math 0.0983 0.2289 0.3176 

Chickenpox 0.0502 0.1117 0.2229 

PedalMe 0.0629 0.1889 0.2416 

MontevideoBus 0.0607 0.1907 0.2463 

MetraLa 0.0508 0.1705 0.2253 

 

 
Fig. 5. The error rates of models for each dataset. 

4.4. Discussion  

    The experimental results demonstrate that the proposed DGSP-GCN model outperforms existing methods in predicting 

similarity within temporal complex networks. The comparison of different embedding layers highlights the effectiveness 

of the A3TGCN architecture, which consistently achieves the lowest error rates across all datasets. This improvement 

can be attributed to the attention mechanism, which allows the model to dynamically weigh the significance of different 

temporal states, leading to more robust and context-aware similarity predictions.  

    Each embedding recurrent layer in the architectures of the proposed model has its merits and demerits, and the best 

layer to use will depend on our experiments. That is why, according to the results of experiments in Table 2 and Fig. 5, 

the performance of the proposed model in the same condition for the A3TGCN layer is almost better than others because 

of an attention mechanism layer. This attention-driven strategy enables A3TGCN to capture intricate relationships and 

the relative importance of neighboring nodes. As a result, it produces highly informative and context-aware embeddings. 

At its core, the attention mechanism allows the model to dynamically assign weights or importance scores to each 

neighbor during the aggregation process, considering both local and global information. By adaptively attending to the 

most relevant nodes, A3TGCN effectively focuses its attention on the crucial aspects of the graph, emphasizing nodes 

that contribute significantly to the target node's representation. This attention-based approach offers several significant 
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advantages: firstly, it enables the model to assign higher weights to influential neighbors, thereby capturing the influence 

and impact of key nodes in the embedding process. Secondly, it allows A3TGCN to prioritize relevant structural patterns 

and dependencies, enhancing its ability to capture complex graph dynamics and characteristics. Thirdly, the attention 

mechanism enables the model to handle varying degrees of node importance, such as nodes with high centrality or rare 

but impactful nodes, enhancing the robustness and adaptability of the embedding generation process. 

    A critical aspect of this study is the comparative analysis with baseline methods, including time series regression and 

random similarity assignment. The results indicate that the proposed model significantly reduces error rates compared to 

these baselines. The time series regression method, while capable of capturing temporal trends at the node level, lacks 

the structural awareness necessary for graph-based similarity predictions. Consequently, it exhibits higher error rates 

than DGSP-GCN, particularly in datasets with complex topological dependencies. The random method serves as a lower-

bound benchmark, confirming that the proposed model is meaningfully learning network dynamics rather than producing 

arbitrary similarity scores. 

    Moreover, the inclusion of multiple embedding architectures provides insights into the trade-offs between different 

methods. While GConvGRU, GConvLSTM, and TGCN offer competitive performance, their reliance on recurrent 

mechanisms without attention-based refinement limits their ability to prioritize influential nodes. The AGCRN model, 

which incorporates adaptive graph convolution, demonstrates notable performance improvements but still falls short of 

A3TGCN due to its lack of explicit temporal attention mechanisms. 

    One of the key findings is the adaptability of DGSP-GCN across diverse datasets, including WikiMath, Chickenpox, 

PedalMe, MontevideoBus, and MetraLa. The model's ability to generalize across varying network structures and 

temporal resolutions suggests its robustness in real-world applications. For instance, in the WikiMath dataset, where 

node interactions evolve daily, DGSP-GCN effectively captures the subtle changes in graph topology, resulting in lower 

MSE and RMSE values. Similarly, in the MetraLa dataset, which features high-frequency temporal updates, the model 

maintains its predictive accuracy, showcasing its scalability to different temporal granularities. 

    While the datasets used in this study were selected for their diversity in graph-temporal structures, we recognize the 

potential for extending the model’s applicability to a broader range of domains. The proposed model’s architecture is not 

limited to specific data types and can be applied to other dynamic data, such as social media interactions, financial 

transaction networks, or epidemiological data. For example, in the context of social media, nodes could represent users, 

and edges could represent interactions, while in financial datasets, nodes might represent accounts and edges the 

transactions between them. Future work could include testing the model on such datasets to validate its generalizability 

and adaptability across various domains, providing deeper insights into its potential applications. 

    In summary, the DGSP-GCN model presents a significant advancement in the evaluation of dynamic network 

similarity, outperforming existing approaches in accuracy and adaptability. By leveraging attention mechanisms and 

deep graph embeddings, it provides a more nuanced understanding of temporal graph evolution, paving the way for 

enhanced applications in anomaly detection, network security, and dynamic system modeling. 

5. Conclusion  

    There are many different kinds of challenges in complex network modeling based on machine learning, and solving 

them improves the performance of network generative models, especially their dynamic counterparts. An automatic 

evaluation approach based on deep learning is one of the most effective ways to improve the quality of artificially 

produced networks. Dynamic generative models have used statistical approaches of static modeling methods, which is 

not optimal due to time dependency in dynamic graph-based structures. Therefore, this paper proposes a deep learning-

based model to solve the challenge of evaluating dynamic generative models. The proposed model contains several 

phases, including node and edge embedding. In the case of embedding, we have tested several embedding architectures 

like GConvGRU, GConvLSTM, TGCN, AGCRN, and A3TGCN. These architectures contain GCN and recurrent neural 

network layers. On the one hand, the GCN is used to capture the graph's topological structure to obtain the spatial 

dependence; on the other hand, the recurrent neural network layer is used to capture the dynamic change of node attribute 

to obtain the temporal dependence. According to the conducted tests, the A3TGCN performs almost better than other 

embedding layers due to having an attention mechanism layer. Besides evaluating dynamic generative models, the 

proposed model can also be used in anomaly detection. Our model achieved the best prediction results under different 

horizons when evaluated on five real-world datasets and compared with the random and time series regression baselines. 

In other words, according to Table 3, the average error rate of the proposed model based on MSE, MAE, and RMSE 

performance measures with the A3TGCN embedding layer for the datasets presented in Table 1 are equal to 0.0645, 

0.1781, and 0.2507, respectively. In contrast, these averages for the time series regression model based on Table 2 each 

are equal to 0.1557, 0.3356, and 0.3933. Also, these values for another baseline, the random model, are separately 0.1961, 

0.3623, and 0.4424. The findings of this paper demonstrate the effectiveness of the DGSP-GCN model in evaluating 
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dynamic network generative models and detecting anomalies in temporal complex networks. By leveraging attention 

mechanisms and deep graph embeddings, the model provides a robust framework for capturing the evolving structural 

and temporal dynamics of networks, outperforming traditional methods such as time series regression and random 

similarity assignment. These results have significant implications for real-world applications, including network security, 

anomaly detection, and dynamic system modeling, where understanding the temporal evolution of networks is crucial. 

While the proposed method demonstrates superior performance compared to existing approaches, it is not without 

limitations. One key limitation lies in its reliance on temporal graphs with well-structured snapshots, which may not be 

readily available for all types of real-world dynamic networks. Additionally, the computational complexity of the 

attention mechanism in large-scale graphs may pose challenges for scalability. These issues highlight the need for further 

optimization of the model’s architecture to reduce its computational cost and adapt to more irregular or incomplete data. 

In light of the findings presented in this study, there are several promising avenues for future research. It would be 

valuable to extend the model’s capabilities to handle larger and more diverse datasets, such as real-time financial 

transaction networks or social media interactions, where noise and data sparsity are common challenges. Moreover, 

integrating adaptive learning techniques to dynamically adjust to evolving network structures could enhance the model’s 

performance in highly dynamic and heterogeneous environments. Exploring explainability and interpretability in graph 

attention mechanisms is another promising direction to provide deeper insights into the decision-making process of the 

model. Last but not least, improving the model's ability to predict similarity for multiple future time steps (i  ≥  1) and 

integrating explainability into the attention mechanisms could provide deeper insights and broader applicability in 

various domains. 
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