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Abstract— Intent detection and slot filling are crucial for understanding human language and are essential for 

creating intelligent virtual assistants, chatbots, and other interactive systems that interpret user queries accurately. 

Recent advancements, especially in transformer-based architectures and large language models (LLMs), have 

significantly improved the effectiveness of intent detection and slot filling. This paper, proposes a method for 

effectively utilizing low volume fine-tuning data samples to enhance the natural language comprehension of 

lightweight language models, yielding a nimble and efficient approach. Our approach involves augmenting new data 

while increasing model layers to enhance understanding of desired intents and slots. We explored various synonym 

replacement methods and prompt-generated data samples created by large language models. To prevent semantic 

meaning disturbance, we established a lexical retention list containing non-𝑶 slots to preserve the sentence's core 

meaning. This strategy enhances the model's slot precision, recall, F1-score, and exact match metrics by 1.41%, 

1.8%, 1.61%, and 3.81%, respectively, compared to not using it. The impact of increasing model layers was studied 

under different layer arrangement scenarios. Our results show that our proposed solution outperforms the baseline 

by 10.95% and 4.89% in exact match and slot F1-score evaluation metrics. 
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I. Problem definition 

Intent detection and slot filling can be considered as a sequence-labeling problem. Given an input sentence 𝑊 =
{𝑤1, 𝑤2, … , 𝑤𝑡} with 𝑡 words, the model must assign a predefined label from the slot set 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑐} consisting of 𝑐 

slots. This task can be approached as a single-label or multi-label classification task; this paper focuses on single-label 

classification, where each word 𝑤𝑥 is assigned only one corresponding slot 𝑠𝑦. Slot filling is done in BIO format, categorizing 

words into three classes: 1) a single slot where a word has all necessary information and is labeled as B; 2) the beginning of an 

information slot labeled as B too. (e.g. the first word in an address); 3) continuation of that slot is labeled as I (rest of the words 

in an address). Any word that holds no information to the identified intent is marked as 𝑂. Intent detection mirrors slot filling 

but uses a distinct set of 𝑒 intents, denoted as  𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑒}. The selected intent 𝑖𝑒 applies to the entire input sequence 𝑊, 

to depict the overall purpose of that utterance. 

II. Transformer-based Language models and LLMs 

The introduction of transformer-based language models first proposed by [1], has benefitted various tasks including intent 

detection and slot filling. Models like BERT [2], a bidirectional auto encoder transformer, pretrained on masked language 

modeling and next sentence prediction tasks exemplify this advancements. The emergent of larger models along with research 

[3] have demonstrated promising results to make use of bigger models with numerous amounts of training parameters. Models 

like GPT-3 [4], FLAN-T5-XL [5] and PaLM [6] containing 175 billion, 11 billion and 540 billion parameters, respectively are 

few examples of recently developed large language models. These models benefit in-context learning, a phenomenon which 

helps the model learn by observing one or a few examples of desired task at inference time. This provided a whole new 

pathway to study both existing and new problems. 

III. Related works 

IV. Intent detection and slot filling with primitive language models 

Intent detection and slot filling have been explored from multiple perspectives. Among previous studies that treated intent 

detection and slot filling as a joint model, [7] have proposed a way to decrease the inference time by nearly 11 times, using a 

BERT model and a two-pass refinement mechanism to prevent order mismatch in the BIO tagging format. In an another 
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approach, [8] presented a multi-lingual multi-task framework for these tasks. Other works including [9], [10] and [11] put effort 

to use the predicted intents to better capture the related slots and vice versa in a joint learning manner. Notably [12], showed that 

training models for Farsi as a low-resource language with data from resource-rich languages demonstrated the benefits of 

multilingual pretrained language models. 

V. Large language models in intent detection and slot filling 

The development of LLMs has advanced intent detection and slot filling. [13] utilized generative LLMs like Mistral 7B [14] and 

Claude v3 Sonnet [15] with adaptive in-context learning and chain of thought prompting to adapt these models for intent detection 

task. This approach integrated these models with resource efficient language models in a hybrid type to address the high hardware 

resources demands. Another study, [16] examined zero-shot capabilities for three LLMs: Mistral, Flan-T5-XL, and a proprietary 

LLM known as granite.13b.v2. In line with the previous approach, they utilized prompts based on fine-tuning data, while 

concentrating on developing a zero-shot system to label desired tokens in dialogue turns. The ILLUMINER [17] method 

approached intent detection and slot filling as a language generation task, using instruction-tuned LLMs such as Falcon-7B-

Instruct[18] and BLOOMZ [19] (Fine-tuned on BLOOM [20]). For intent detection, they listed possible intent labels to choose 

from in a given instruction, expecting an overall intent output for the input utterance. In slot filling, a single-prompt information 

extraction was employed differing from other approaches [21]. 

 

VI. Proposed Method 

VII. Overview 

By using a Bidirectional transformer encoder Like BERT or its derivatives  (e.g.: DistilBERT[22],  RoBERTa [23], ALBERT 

[24] and mBERT), our method first takes in a sequence of input utterances 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑡} and adds two special tokens 

[𝐶𝐿𝑆] and [𝑆𝐸𝑃] to the beginning and the end of sequence, respectively. After that, the BERT-based model produces the 

contextualized latent representations for each input token, including [𝐶𝐿𝑆] and [𝑆𝐸𝑃] tokens.  Following [25], the key idea in 

detecting the intents is to use the contextualized latent representation of [𝐶𝐿𝑆] token to choose the correct intent from the 

predefined set of intents. While implementing the demonstrated method, optimizing certain aspects of the problem becomes 

crucial, including managing low-volume data regimes and ensuring resource efficiency. In the following sections, we address 

these challenges by: a) adding additional layers to models, b) testing various architectures of intent and slot classifiers, and c) 

augmenting on low-volume data to enhance model’s performance. Overview of our method is illustrated in Figure 1. 
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Figure 1 Our proposed method includes two major parts: A) data augmentation phase(left) and B) Model enhancement 

techniques (middle). The enhanced model is then fine-tuned on the augmented data (right). 

 

VIII. Enhancing the model 

Adding extra layers to BERT-based models has been explored by [26] and [27] previously. In first approach, the authors aimed 

to differentiate the impact of various layers of BERT-based models on learning dependencies among input utterances and 

subsequently sought to incorporate additional layers into these models. In contrast, the second method focused on achieving 

improved results on evaluation metrics while scaling the BERT model from 12 layers to 1000 layers. Following the described 

works, we adopted for a similar approach, specifically to double the number of layers in utilized model. We experimented three 

different strategies in our enhancement technique: a) interlayer insertion, b) complete insertion and c) mirrored insertion. Each 

technique is detailed in Figure 2. 
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Figure 2 Illustration of layer duplication methods presented in separate columns from left to the right: 1) normal mode without 

layer addition. 2) interlayer insertion 3) complete insertion 4) mirrored insertion. 

 

IX. Different Architectures for intent and slot classifier 

Similar to [12], our approach features a dropout layer followed by a linear layer with 𝑐 neurons to identify potential slots. The 

model’s output excluding the 𝐶𝐿𝑆 token representation serves as input for this classifier. The same intent classifier operates 

similarly, differing only in the number of neurons (𝑒 many neurons) and input which uses the latent representation of the 𝐶𝐿𝑆 

token. 

X. Data augmentation 

Unlike languages such as English and Chinese, Farsi can be considered as a low-resource language. This is practically significant 

when fine-tuning models for intent detection and slot filling tasks, as there is less high-quality data available in this language. 

As a result, exploring methods to augment new fine-tuning data has led us to various data augmentation solutions, namely: a) 

synonym replacement, and b) data augmentation with large language models through prompting. Each of the aforementioned 

options is explained in the following sections. 

XI. Synonym replacement 

The concept behind this method is to identify synonyms in input utterances and substitute them with the original words. The 

rationale for this approach is that synonyms share similar semantic characteristics, making them viable alternative candidates for 

conveying in a message in a given input. However, it is evident that the overall divergence in meaning of an input utterance after 

synonym replacement means that not all synonyms are well-suited for this task. Nevertheless, we chose to evaluate the impact 

of this data augmentation approach on models’ performance. In exploring this idea, two implementations have emerged as: a) 

word-wise replacement. b) sentence-wise replacement. 

a) Word-wise replacement 

In word-wise replacement, we search for each training word and retrieve 𝑛 number of its synonyms. Then for every retrieved 

synonym, we build a new training example, consisting of the replaced synonym and all other input words. It is worth mentioning 

that the general structure of the training sample remains unchanged and at each instance, only one word is altered. An example 

of this method is shown in Figure 3. 

 

 
Figure 3 An example of word-wise replacement data augmentation. The first line is the primary sample with it’s slots oriented 

vertically. The second and third lines depict the augmented samples, with replaced synonyms appeared in red color, underlined 

text. 

 

b) Sentence-wise replacement 

Unlike previous method where for each word synonym replacement a new sample gets created, here we gather all available 

synonyms for every word in a training sample and by replacing all of them in the original sample, a new so called warped sample 

is made. This process gets repeated until we run out of synonyms for that given sample. Since all words do not have the same 

number of synonyms, we look for the word with the highest number of synonyms and take number of synonyms as our scale and 

build many augmented samples. For the rest of the words in an input utterance that have a smaller number of synonyms, first we 

put all synonyms one by one in the subsequent augmented samples and when each synonym list for a given word reaches its end, 

we randomly select previously chosen synonyms for the rest of augmented samples. It’s worth noting that due to the nature of 

this technique, the number of generated examples in this approach is far less than the word-wise replacement method. It is evident 

that produced training samples in this method are more prone to change the overall meaning of the original sample. Figure 4 

shows this method in detail. 
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Figure 4 An example of sentence-wise augmentation: Synonyms re replaced with their primary words at each step, resulting in 

a  distinctly different augmented sample. 

 

c) Lexical retention list 

Upon examining the two mentioned synonym replacement approaches, it is evident that replacement is not always beneficial. 

Thus, we propose extracting the non-𝑂 slot tokens and excluding them from replacement. The key concept behind this idea is to 

preserve as much information as possible in the sample by only altering the 𝑂 words and leaving all other words intact. 

d) Number of synonyms to retrieve and maximum number of samples 

As controllable parameters, number of synonyms and maximum number of samples can be specified to reflect the efficiency of 

augmented data volume. This aspect will be examined in Ablation study. 

XII. Data augmentation through prompting 

Querying language models to achieve new samples has been already experimented by [28] and [29]. In the first study, a BERT 

language model was prompted to identify named entities in unlabeled examples. The second research utilized GPT J 6B [30] on 

DAILY DIALOG [31] dataset to augment data through weakly-supervised filters. Our approach involved using Llama 3.1 70B 

[32], Chat GPT 4 o mini [33] and Qwen2.5-72B-Instruct [34] to generate desired data samples. For each intent, we provided a 

separate prompt with a few training samples to the models. Although the specific prompts varied by model, they maintained a 

consistent overall structure. To avoid repetitive samples, we specifically instructed the models to create structurally diverse 

samples for each intent. 

 

XIII. Evaluation 

XIV. Datasets 

To evaluate our approach for detecting intents and slots, we tested several related datasets described below. 

XV. MASSIVE 1M 

MASSIVE dataset [35] is a labeled multilingual dataset for intent detection and slot filling, covering 51 languages including 

Farsi. It consists 12664 training samples and 2974 samples for both development and testing in Farsi, encompassing 60 intents 

and 108 slots. 

XVI. MODERN ISC 

This proprietary dataset, produced by “Modern isc” company1, aims to develop natural language understanding capabilities for 

a virtual assistant in e-banking domain. This dataset contains data under 21 different intents and 110 slots, with 1943 training 

samples and 210 validations samples. Since the purpose of making this dataset is to sponsor a finance related chatbot challenge, 

therefore the test set data is retained by the company for final evaluations, so we used the validation set as test set to measure 

our methods performance. 

XVII. Evaluation metrics 

For evaluation, we employed precision, recall and F1 measure scores for slot filling and utilized accuracy score for intent 

detection. To assess overall model performance, we also utilized an exact match metric which is considered true when all 

predicted slots and intent for a sample are predicted correctly, otherwise it is false.  

XVIII. Experimented models 

Following [25], we chose the joint intent detection and slot filling approach, executing our experiments with various models of 

BERT family. Given that the input data is in Farsi, we searched for a BERT-based model Pretrained in that language. By 

exploring online resources such as GitHub2 and huggingface3, we identified several suitable candidate models, listed in the first 

and second columns of Table 1.  

XIX. Preliminary experiment 

We first trained candidate models on MASSIVE dataset to evaluate their overall capability. As our final goal was to maximize 

intent detection and slot filling performance on MODERN ISC dataset, we put our efforts to apply enhancement techniques on 

this dataset and employed MASSIVE dataset exclusively to filter out the unsuitable candidates, saving both time and resource. 

For trainings, we used the AdamW optimizer [36] with the learning rate of 5𝑒 − 5   and an epsilon value of 1𝑒 − 8, and trained 

the models for 10 epochs. The results are shown in Table 1. 

Among these models, the two models “sharif-dal/dal-bert” and “HooshvareLab/bert-fa-base-uncased” yielded the best 

results. We further analyzed the capability of these two selected models. An analysis was done on wrong inferences of MASSIVE 

dataset test set to better understand the weaknesses and strengths of these models. The analyzed errors are: A) the number of 

incorrect intent predictions (intent mismatch). B) actual 𝑂 slots incorrectly marked as non-𝑂 prediction (true 𝑂 false slot). C) 

 
1 www.modernisc.com 
2 www.github.com 
3 www.huggingface.co 
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actual non-𝑂 slots predicted as 𝑂 (true slot false 𝑂). D) Actual non-𝑂 slots predicted as other wrong non-𝑂 slots (slot mismatch). 

The MASSIVE test-set consists of 2974 samples and a total of 21834 slots. We also explored how different architectures effect 

intent detection and slot filling neural networks classifiers, by adding two linear layers and two GELU [37] activation layers. 

The results are summarized in Table 2. 

 

Table 1 Results of candidate models on MASSIVE dataset. 

Model Family Model name 

Slot 

precisi

on 

Slot 

recal

l 

Slot 

F1 

score 

Intent 

accurac

y 

Exact 

matc

h 

BERT sharif-dal/dal-bert 70.81 78.0

8 

74.27 86.78 65.09 

DistilBERT HooshvareLab/distilbert-fa-zwnj-base 68.92 72.0

4 

70.44 85.58 60.64 

RoBERTa HooshvareLab/roberta-fa-zwnj-base 49.47 57.1

6 

53.04 83.69 47.67 

DistilBERT HooshvareLab/distilbert-fa-zwnj-base-

ner 

68.93 71.1

9 

70.04 86.08 60.40 

RoBERTa HooshvareLab/roberta-fa-zwnj-base-

ner 

56.06 63.7

9 

59.67 84.16 51.00 

ALBERT HooshvareLab/albert-fa-zwnj-base-v2 62.05 66.7

1 

64.30 83.37 53.71 

BERT HooshvareLab/bert-fa-base-uncased 73.75 77.5

1 

75.58 86.85 65.97 

BERT HooshvareLab/bert-fa-zwnj-base-ner 71.30 74.9

1 

73.06 86.11 62.60 

BERT HooshvareLab/bert-fa-zwnj-base 71.13 75.5

1 

73.25 86.55 63.71 

ALBERT m3hrdadfi/albert-fa-base-v2-clf-

persiannews 

60.07 63.9

7 

61.96 83.69 53.53 

MBERT persiannlp/mbert-base-parsinlu-

entailment 

66.30 73.4

3 

69.68 85.73 59.07 

 

Table 2 Comparison of different potential errors in incorrect inferences bwtween two top models. Model names with 2L_2G, 

indicate the addition of two linear and GELU activation layers. Lower values are preferable. 

Model name 

Intent 

mismatc

h 

True O 

false slot 

True slot 

false O 

Slot 

mismatc

h 

sharif-dal/dal-bert 375/2974 541/2183

4 

561/2183

4 

387/2183

4 

sharif-dal/dal-bert_2L_2G 400/2974 510/2183

4 

650/2183

4 

578/2183

4 

HooshvareLab/bert-fa-base-uncased 391/2974 506/2183

4 

633/2183

4 

392/2183

4 

HooshvareLab/bert-fa-base-

uncased_2L_2G 

393/2974 534/2183

4 

700/2183

4 

705/2183

4 

 

The results indicate that adding two extra linear and GELU activation layers does not provide an advantage over the simpler 

architecture with a dropout layer and a linear layer. Although based on Table 2 the “sharif-dal/dal-bert” showed better 

performance, the overall differences are minimal, and initial results in Table 1 suggested that “HooshvareLab/bert-fa-base-

uncased” model has best overall performance. Therefore, we selected “HooshvareLab/bert-fa-base-uncased” as our main 

model. 

XX. Main results 

After identifying best model, two separate tests were conducted to evaluate the impact of data augmentation and model 

enhancement on MODERN ISC dataset which has fewer samples than MASSIVE dataset, making it a suitable benchmark under 

that set of conditions. 

XXI. Data augmentation results 

Table 3 compares various data augmentation scenarios with the results obtained without augmentation. Initially, it appears that 

word-wise synonym replacement without lexical retention list yields the best results; however this method generates the most 

samples, skewing the comparison. To accurately assess the impact of other states, we equalized the sample sizes to align with 

the number of prompt-generated samples as detailed in Table 4. 

By equalizing the number of training samples, the differences between word-wise synonym replacement methods (with and 

without using lexical retention list) become clear. Replacing only one word at a time better preserves meaning compared altering 

the entire input. While avoiding lexical retention list improves slot prediction, it results in 1% drop in exact match accuracy 
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compared to using them. To further investigate the impact of lexical retention list, we tested different model enhancement 

techniques under both conditions. 

XXII. Model enhancement results 

Using the best results from Table 4 as a reference, we tested various enhancing strategies under different data augmentation 

methods, with the results shown in Table 5. 

Experiments detailed in Table 5 demonstrate performance improvements by increasing model layers. Notably, the mirrored 

insertion layer enhancement method, which employs lexical retention list significantly, outperforms the model without layer 

insertion across several metrics: slot precision, slot recall, slot F1 score, intent accuracy and exact match improved by 2.29%, 

2.22%, 2.26% 0.48% and 8.1% respectively. This indicates that increasing model depth enhances its ability to understand 

semantic meaning relationships among input utterance tokens. 

 

Table 3 The effect of different data expansion methods on evaluation metrics with no sample limitation. 

Data expansion type 

No. of 

synony

ms 

No. of 

sample

s 

lexical 

retentio

n list 

usage 

Slot 

precisio

n 

Slot 

recal

l 

Slot 

F1 

score 

Intent 

accurac

y 

Exact 

matc

h 

No data expansion 0 1943 No 84.22 87.5 85.83 92.85 64.76 

Word-wise synonym 

replacement 

1 16062 Yes 89.78 91.5

2 

90.64 92.85 74.76 

1 33770 No 92.21 93.7

5 

92.97 94.28 82.38 

Sentence-wise synonym 

replacement 

1 1942 Yes 72.84 76.3

8 

74.57 88.57 45.23 

1 1942 No 72.00 75.0

0 

73.46 81.90 45.23 

Data augmentation via 

prompting 

0 3000 No 80.64 83.8

8 

82.23 92.85 58.57 

 

 

Table 4 Different data expansion methods with nearly equal amounts of training samples. 

Data expansion type 

No. of 

sample

s 

lexical 

retentio

n list 

usage 

Slot 

precisio

n 

Slot 

reca

ll 

Slot 

F1 

score 

Intent 

accurac

y 

Exact 

matc

h 

No data expansion 1943 No 84.22 87.5 85.83 92.85 64.76 

Word-wise synonym 

replacement 

3000 Yes 86.49 88.0

5 

87.26 91.42 68.57 

3000 No 87.5 89.4

4 

88.46 91.42 67.61 

Sentence-wise synonym 

replacement 

3000 Yes 77.48 82.2

2 

79.78 87.61 54.76 

3000 No 83.26 85.6

9 

84.46 90.00 57.61 

Data augmentation via 

prompting 

3000 No 80.64 83.8

8 

82.23 92.85 58.57 

 

 

Table 5 Comparision of model enhancing techniques with best data augmentation methods. 

Architecture 

lexical 

retention 

list usage 

Slot 

precisi

on 

Slot 

recall 

Slot 

F1 

score 

Intent 

accurac

y 

Exact 

match 

Best method with 

Normal architecture 

(12 layers) 

No 87.5 89.44 88.46 91.42 67.61 

Yes 86.49 88.05 87.26 91.42 68.57 

Interlayer insertion 
No 88.31 90.27 89.25 91.90 73.33 

Yes 88.32 89.30 88.81 90.47 67.14 

Complete insertion 
No 87.38 89.44 88.40 91.42 68.57 

Yes 88.34 90.55 89.43 92.38 67.61 

Mirrored insertion 
No 88.38 89.86 89.11 92.38 71.90 

Yes 89.79 91.66 90.72 91.90 75.71 
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XXIII. Conclusion 

We demonstrated that intent detection and slot filling tasks can be effectively addressed via a joint training approach. We selected 

the best publicly available pretrained BERT-based language model for FARSI language. Additionally, we explored dataset 

expansion and showed that dataset augmentation is both a viable and an effective strategy for improving results. Along with data 

augmentation, we demonstrated making use of lexical retention list is benefitial for keeping the augmented data from semantic 

meaning divergence. We also found that enhancing models can better capture contextual representations. Together, these 

strategies offer a reliable solution that does not require the extensive processing resources associated with large language models. 

Future works could focus on multiple intent detection and utilizing intents to predict slots and vice versa. 

XXIV. Ablation study 

XXV. Effect of augmented data volume on model’s performance 

To minimize resource use while fine-tuning candidate models with various data augmentation and model enhancement strategies, 

we conducted a test comparing different volumes of augmented data on the optimal solution. The results are presented in Figure 

5. Comparing the results of 3K samples with larger data sest indicates that increasing the volume of data leads to improved 

values in slot precision, slot recall and slot F1-score. However the rise in these evaluation metrics is not a consistent upward 

trend, as it partially levels off at 6K, 9K and 12K sample sizes. Notabaly for 15K sample size dataset the differences become 

significant, yielding better results at higher values. In contrast, for intent detection, adding more data samples does not enhance 

performance remaining around 92% on average with nearly 1% variance across all tested sample sizes. In the exact match 

evaluation metric, results improve as sample size increases, except for 12K sample size. Comparing 15K sample size with 3K 

shows a 5.71% improvement simply by providing more augmented data. 

 

 
Figure 5 Comparison on performance of different dataset sizes for the optimal solution. 

 

XXVI. BIO tagging order correction & Irrelevant slot elimination 

Observing the generated tags at inference time, we discerned that in some cases the trained model fails to preserve true BIO 

tagging order, causing it to have dropped performance while filling the slots. To overcome this, we implemented a correction 

method in which it keeps track of produced slots by the model and then corrects the slots that are not tagged in the correct order 

by using a pre-written code. The reason behind using this strategy lies behind resource efficiency and problem simplicity. We 

also observed that in some cases, unrelated slots are selected with respect to the identified intent. To prevent unrelated slots to 

be seen at inefernce time, first we acquired the list of each intent slots and then tried to look for predicted slots among valid slot 

values for that intent. Invalid slots then got replaced with O token. The result of using these enhancement techniques are shown 

in Figure 6. The yielded results resemble no difference  in intent accuracy and exact match evaluation metrics. On the other hand, 

in slot precision and slot recall, there are subtle differences. Empowering BIO tagging order correction seems to increase slot 

precision but does not help with slot recall, while using Irrelevant slot elimination tries to refine slot recall but fails in achieving 

better slot precision. 
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Figure 6 Comparing the effect of using BIO tagging order correction and Irrelevant slot elimination on evaluation metrics in 

optimal solution trained on 15K samples.’BTOC’ and ‘ISE’ stancd for BIO tagging order correction and Irrelevant slot 

elimination, respectively 
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