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Abstract—Traditional Long Short-Term Memory (LSTM) networks are effective for handling sequential data but 

have limitations such as gradient vanishing and difficulty in capturing long-term dependencies, which can impact 

their performance in dynamic and risky environments like stock trading. To address these limitations, this study 

explores the usage of the newly introduced Extended Long Short-Term Memory (xLSTM) network in combination 

with a deep reinforcement learning (DRL) approach for automated stock trading. Our proposed method utilizes 

xLSTM networks in both actor and critic components, enabling effective handling of time series data and dynamic 

market environments. Proximal Policy Optimization (PPO), with its ability to balance exploration and exploitation, 

is employed to optimize the trading strategy. Experiments were conducted using financial data from major tech 

companies over a comprehensive timeline, demonstrating that the xLSTM-based model outperforms LSTM-based 

methods in key trading evaluation metrics, including cumulative return, average profitability per trade, maximum 

earning rate, maximum pullback, and Sharpe ratio. These findings mark the potential of xLSTM for enhancing DRL-

based stock trading systems. 
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I. Introduction 

In general, stakeholders aim to maximize their returns by predicting market trends. However, there is always concern about 

achieving maximum profit in a highly complex and fluctuating market environment. This is challenging because human 

insights are limited and cannot easily account for all relevant factors. To address this, researchers have focused on developing 

automated trading systems that can adapt to market changes and make predictions from a more generalized perspective [1]. 

Previously, many research studies on the development of automated stock trading systems employed supervised learning 

approaches [2]. Although these approaches were impressive, they had many limitations in achieving the optimal point. Over 

the years, it has become evident that the deep reinforcement learning (DRL) approach has demonstrated promising results in 

predicting stock prices. Compared to merely using supervised methods like recurrent neural networks (RNN) that lack a 

mechanism to take actions based on predictions, DRL approaches can dynamically adjust actions in response to new states in 

the market environment. Moreover, regarding the exploration mechanism in DRL, the model receives feedback from the 

market, and by employing it, the model becomes more capable of exploiting profitable patterns.  

While some early works use deep Q-learning models [3], among reinforcement learning (RL) algorithms, deep Q-learning 

(DQL) is often considered less robust compared to more advanced approaches, such as Proximal Policy Optimization (PPO), 

which addresses key challenges in stability and sample efficiency. 

In other research studies, an agent-driven model has been proposed, enhanced by DRL and imitation learning, which enables 

the agent to learn directly from raw inputs and perform better in high-complexity problems. In this study, the trading process is 

formulated as a partially observable Markov decision process (POMDP) to account for the noisy nature of financial data [4]. 

There is an inspiring research study focused on using cascaded LSTM networks with a deep reinforcement learning approach. 

This study combines proximal policy optimization (PPO) with LSTM networks to create a robust and reliable automated stock 

trading system. This work uses cascaded LSTM networks with DRL where the first LSTM extracts time-series features from 

daily stock data, and two other LSTM networks are used within the DRL agent for strategy learning [5]. 

A recent work combined Deep Q-Network (DQN) and Deep Deterministic Policy Gradient (DDPG) with Convolutional 
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Neural Network (CNN) and Gated Recurrent Unit (GRU) architectures for automated stock trading. Additionally, the attention 

mechanism was added to handle the limitations of RNN networks–GRU [6]. 

However, with the introduction of extended LSTM (xLSTM) architecture [7], evaluating its performance in automated stock 

trading with DRL needs to be explored. xLSTM has mitigated some weaknesses in LSTM models such as gradient vanishing, 

resulting in forgetting long-term patterns. xLSTM also demonstrates better results than the Transformer architecture in some 

benchmarks. In a more general context, the application of xLSTM in deep reinforcement learning approaches has been 

minimally explored and is limited to a single research study [8]. 

In this study, we utilized the newly introduced xLSTM architecture in combination with DRL to predict stock market prices. 

We have used xLSTM in the RL-based model to retrieve the history of observations in both actor and critic parts, enabling the 

model to use the retrieved observations to revise its strategy or make predictions. 

II. Preliminary 

LSTM has been a breakthrough in natural language processing tasks as a result of its capabilities to retrieve the information it 

has received. However, with more advancements in natural language processing over time, other methods like Transformer 

architecture were introduced and dealt with some of the key challenges of Recurrent Neural Networks (RNNs). For example, 

RNNs perform well with sequential and time-series data, but they would either face gradient vanishing or exploding problems 

for long sequences. Transformers solved this problem by suggesting inherent parallelism and learning both short-term and 

long-term dependencies, but the cost of this approach was the high parameter usage. 

Roughly 27 years after the publication of the original LSTM paper, xLSTM has been introduced to refine LSTM’s weaknesses. 

xLSTM has two major modifications compared to LSTM which are the utilization of exponential gating and the new memory 

structure. xLSTM architecture is composed of sLSTM and mLSTM blocks as shown in Fig. 1. sLSTM presents scalar memory 

and update and a novel memory mixing, while mLSTM is designed to be completely parallelizable using matrix memory and 

covariance update rule. A combination of sLSTM and mLSTM blocks can be selected to create a stack of xLSTM blocks, 

performing similar tasks to LSTM but with a distinct internal design. 

 

 
Fig. 1. The extended LSTM (xLSTM) family Architecture [7]. 

III. Proposed method 

In this section, we provide a brief overview of our proposed approach. First, we introduce our general architecture and describe 

the relationships between the main building blocks. We then explain each block, followed by an outline of our reinforcement 

learning algorithm and the training description of xLSTM networks. Finally, we describe our stock trading environment and 

the reward function that we employ in our environment. 

IV. General Model Architecture 

Our proposed method is based on the Proximal Policy Optimization (PPO), one of the best-performing reinforcement learning 

algorithms. We have used Recurrent PPO from Stable Baselines3 library1, which has added support for recurrent policies to 

implement PPO. We have implemented a new RecurrentActorCriticPolicy named xLSTMPolicy, connected this module to the 

Recurrent PPO module, and worked together as a DRL model. The xLSTMPolicy utilizes the official xLSTM library2. 

V. Recurrent Proximal Policy Optimization (PPO) 

Proximal Policy Optimization (PPO) is a popular algorithm in reinforcement learning that balances exploration and 

exploitation while optimizing a policy. This algorithm is implemented in the stable-baseline3 library with recurrent neural 

networks (LSTM) to define a powerful and robust pipeline for processing sequential data and making reliable predictions–

Recurrent PPO. In this study, we utilized xLSTM networks instead of LSTM to test whether it is effective to use or not, in the 

context of time series data and stock trading tasks. 

Algorithm 1 starts with randomly initializing two xLSTM neural networks–an actor network for making decisions and a critic 

network for estimating the value of states. It then trains these networks through repeated interactions with our stock trading 

environment. During each episode, the agent observes financial states, decides on actions, receives rewards, and progressively 

improves its decision-making strategy by learning from these interactions. The xLSTM architecture allows the agent to 

maintain memory of past states, which is crucial for understanding complex financial time series and making sequential 

investment or trading decisions. 

 

 

 

Inputs: 

 
1https://sb3-contrib.readthedocs.io/en/master/modules/ppo_recurrent.html 
2Available at: https://github.com/NX-AI/xlstm 
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- Initial observation sₜ 

- Adam optimizer with learning rate α 

- Discount factor γ 

- Clipping range ϵ Advantage estimate Aₜ 

- Action space 

- Environment with financial data 

- xLSTM internal states 

Outputs: 

 

 
- Parameters θ of xLSTM actor 

- Parameters φ of xLSTM critic 

- Trained xLSTM model 

1  Choose the implemented xLSTM Recurrent Actor-Critic Policy as policy_aliases and use its methods and components in 

this Recurrent PPO module; 

2  Randomly initialize xLSTM actor  and critic with parameters θ and φ; 

3  Initialize the replay buffer D; 

4  Initialize xLSTM hidden state h₀ and cell state c₀; 

5  for each episode do 

6 Initialize the environment with the initial state s₀; 

7   Initialize xLSTM hidden state h₀ and cell state c₀; 

8 for each step t in the episode do 

9  Receive state sₜ from the environment; 

10  Extract features using the MLP feature extractor; 

11  Encode features for xLSTM processing; 

12  Process sₜ with xLSTM actor to obtain feature vector fₜ; 

13   Compute the critic's value estimate v̂ₜ = Vₓₗₛₜ( fₜ); 

14   Sample an action aₜ from the policy πₓₗₛₜ(aₜ | fₜ); 

15   Execute action aₜ in the environment to receive the 

reward rₜ and next state sₜ₊₁; 

16  Process sₜ₊₁ with xLSTM actor to obtain feature vector fₜ₊₁; 

17   Compute the advantage estimate Aₜ = rₜ + γ v̂ₜ₊₁ − v̂ₜ; 

18   Add the transition (fₜ, aₜ, Aₜ) to the replay buffer D; 

19  if the episode is terminated then 

20    Update the critic: 

   φ ← φ − αV ∇φ (rₜ + γ v̂ₜ₊₁ − v̂ₜ)²; 

21 Update the actor using the PPO objective function: 

   θ ← θ + αθ ∇θ L_PPO(θ); 

22 Update hidden state hₜ and cell state cₜ of xLSTM 

by backpropagating the gradient of the reward 

function; 

23   Clear the replay buffer D; 

24   end if 

25 end for 

26  end for 

VI. xLSTM Networks 

We have utilized two xLSTM networks in our proposed method: one as a policy network and the other as a value network. 

These networks share the same configuration and architecture, with the Gaussian Error Linear Unit (GeLU) as their activation 

function during training. The embedding vector size is 128. Our policy and value network work together and interact with the 

environment to select the most profitable action in each time step as shown in Fig. 2. 

VII. Stock Trading Environment 

As shown in Fig. 2, our stock trading environment is developed to take the selected action (based on policy) and stock prices 

from the dataset and return the next observation and reward value to interact with the agent. For more details about this 

environment, we refer to the initial balance amount, which is $1 million to become compatible with the J. Zou et al. research 

study [5]. 

Algorithm 1: Recurrent PPO, using xLSTM Actor-Critic Policy 

Algorithm 1: Recurrent PPO, using xLSTM Actor-Critic Policy 
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Fig. 2. General Proposed Model Architecture. 

As shown in Algorithm 2, our reward function first checks the market's turbulence index against a predefined threshold to 

avoid high-risk situations. We penalize the model for choosing actions in unstable market conditions. The penalty value is set 

as a large, negative value of -1. When the market is stable, our reward function calculates the reward by measuring the total 

portfolio value change and subtracting transaction costs, then normalizes this raw reward. 

Inputs: 

 
 

- turbulence_index 

- turbulence_threshold 

- current_stock_prices 

- prev_total_value 

- balance 

- shares_held 

- action 

Output: Normalized_Reward 

1  Penalty_value = -1;  

2  // Turbulence Check (Market Risk Assessment) 

3  if turbulence_index > turbulence_threshold then 

4 Normalized_Reward = Penalty_value; 

5 return Normalized_Reward; 

6  end if 

7  total_value = balance + Sum( 

 shares_held[stock] * current_stock_prices[stock]  

8  for each stock); 

9  value_change = total_value - prev_total_value; 

10  transaction_cost = Compute_Transaction_Cost(action,  

      current_stock_prices); 

11  raw_reward = value_change - transaction_cost; 

12  Normalized_Reward = Normalize_Reward(raw_reward); 

13  return Normalized_Reward; 

VIII. Experiment & Result 

IX. Dataset 

We use market data from Yahoo for five major companies in the tech industry including NVIDIA, Apple, Microsoft, Google, 

and Amazon. For these companies, we’ve selected the timeframe from 2009/01/01 to 2022/01/01 as the training data and the 

timeframe from 2022/01/02 to 2022/06/01 as the test data. For each of these companies, we have low, high, open, close, adj 

close, and volume prices in our feature set per each day in the chosen range. We also define the turbulence index as (EQ. 1) to 

avoid trading in extreme market situations [9]. 

X. Evaluation Metrics 

XI. Cumulative Return (CR) 

This measures the total return of the portfolio after completion of the trading process. 

𝐶𝑅 =
𝑃𝑓𝑖𝑛𝑎𝑙− 𝑃𝑖𝑛𝑖𝑡

𝑃𝑖𝑛𝑖𝑡
                                        (1) 

Where: 𝑃𝑓𝑖𝑛𝑎𝑙  is the final portfolio value, and 𝑃𝑖𝑛𝑖𝑡  is the portfolio’s initial value. 

XII. Maximum Earning Rate (MER) 

This evaluation metric shows the best performance that a trading strategy could achieve over time. 

𝑀𝐸𝑅 =  𝑚𝑎𝑥(
𝐴𝑡− 𝑖𝑛𝑖𝑡𝑎𝑙_𝑏𝑎𝑙𝑎𝑛𝑐𝑒

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑏𝑎𝑙𝑎𝑛𝑐𝑒
)                         (2) 

Where: 𝐴𝑡 is the total asset of strategy at time t. 

Algorithm 2:  Reward Function 
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XIII. Maximum PullBack (MPB) 

It measures the maximum percentage of decrease in profitability. 

𝑀𝑃𝐵 =  𝑚𝑎𝑥(
𝐴𝑡𝑟𝑜𝑢𝑔ℎ− 𝐴𝑝𝑒𝑎𝑘

𝐴𝑝𝑒𝑎𝑘
)                             (3) 

Where: 𝐴𝑝𝑒𝑎𝑘  is the highest total asset value before a decline, and 𝐴𝑡𝑟𝑜𝑢𝑔ℎ is the lowest total asset value after the peak, 

during the decline. 

XIV. Average Profitability Per Trade (APPT) 

  𝐴𝑃𝑃𝑇 =  
𝑃𝑓𝑖𝑛𝑎𝑙 −𝑃𝑖𝑛𝑖𝑡

𝑛
                                           (4) 

  Where: n is the number of trades. 

XV. Sharpe Ratio (SR) 

  𝑆𝑅 =  
𝐸(𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜) − 𝑅𝑟𝑖𝑠𝑘−𝑓𝑟𝑒𝑒

𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
                              (5) 

Where: 𝐸(𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜) is the portfolio’s expected return over a given period, 𝑅𝑟𝑖𝑠𝑘−𝑓𝑟𝑒𝑒  is the risk-free rate, and 𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 

is the standard deviation of the portfolio's returns, a measure of risk or volatility. 

XVI. Compared Models 

 To test the performance of xLSTM in comparison with classic LSTM networks, we trained a base model using Recurrent 

PPO with MLPPolicy, which employs LSTM networks for both the actor and the critic. The performance of this base model with 

three different time window sizes–30, 15, and 5–for the test timeframes is shown in Fig. 4.  

 Another experiment was conducted to find the best hyper-parameters for training our proposed model. In Fig. 3, we can see 

the return of trained models with different batch sizes, using a time window of 3. This plot shows that using a batch size of 32 

generally achieves a higher return. The fluctuations occurred due to the small size of the time window. A long-term view of the 

dataset and a better examination of historical data can partially solve this problem. Therefore, we trained our models with larger 

time windows to address this issue. 

 Fig. 5 presents the return over time for the test data predictions of our proposed model using three different time windows. It 

is evident that with a time window of 30, the model achieves better outcomes and exhibits a smoother flow. In Fig. 5, negative 

returns are almost nonexistent, which indicates that this strategy is profitable with minimal risk of financial loss. In the 

comparison between Fig. 4 and Fig. 5, we can observe the effect of using xLSTM as policy and value networks to achieve more 

reliable and robust predictions. The smooth flow achieved with xLSTM using a time window size of 30 underscores its potential 

to inspire further experiments and extend its application in various automated trading strategies with the DRL approach. 

The evaluation metrics and configurations for both our base and proposed models are presented in Table I. This table compares 

the performance of using LSTM and xLSTM networks across key trade evaluation metrics. The results clearly demonstrate 

that incorporating xLSTM into our architecture outperforms the classic LSTM networks across all evaluation metrics. 

 

 

 
 

Fig. 3. The trading results of our proposed model with time_window= 3, and different batch sizes. 
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Fig. 4. The trading results of the base model (Recurrent PPO with LSTM networks) with different time windows. 

 
Fig. 5. The trading results of our proposed model with different time windows and batch_size=32. 

TABLE I.  COMPARISON BETWEEN THE BASE AND OUR PROPOSED MODEL ACROSS IMPORTANT EVALUATION METRICS. 

Model 
Configuration Evaluation Metrics 

Time Window Size Batch Size CR MER MPB APPT SR 

Base 

(Recurrent PPO with LSTM Networks) 
30 64 46.16 50.61 28.92 152.58 0.799 

Base 

(Recurrent PPO with LSTM Networks) 
15 64 35.80 40.80 32.33 118.33 0.634 

Base 

(Recurrent PPO with LSTM Networks) 
5 64 37.68 41.93 30.98 124.54 0.733 

Proposed Model 30 32 53.11 57.12 7.58 175.54 1.650 

Proposed Model 15 32 39.28 43.17 32.28 129.82 0.718 

Proposed Model 5 32 36.30 41.18 32.55 119.99 0.639 

 

XVII. Conclusion 

This study explored the potential of xLSTM networks combined with the Deep Reinforcement Learning (DRL) approach for 

automated stock trading. 

 Our results clearly show that xLSTM outperforms classic LSTM networks, which aligns with the primary goal of this 

research. Additionally, our work explored the combination of xLSTM with DRL as it had been unexplored. xLSTM networks 
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effectively address many LSTM limitations. However, training the xLSTM network requires more computational resources, 

which makes it challenging to test it on a large-scale problem. Therefore, we begin by evaluating the performance of this key 

idea using five stock market prices and lightweight features in combination with a popular RL algorithm (PPO) to achieve our 

goal and explore the capabilities of xLSTM networks for processing time series data. 

XVIII. Future Work 

While our results demonstrate the capability of xLSTM in this context, there are some directions for future work to enhance 

and expand the exploration of this approach. 

One key idea for our future work is more powerful feature engineering because meaningful features can effectively help the 

model perform better and design a better trading strategy. Another idea is to use ensemble modeling in the actor or critic 

network to determine the out. 
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