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Abstract—The study employed Deep Learning Frailty (DLF), a compelling neural modeling framework for 

predicting heart failure patient survival. The DLF embeds a notion of multiplicative frailty from classical survival 

analysis that deals with unobserved heterogeneity while exploiting the neural structure's strong capabilities in 

approximating any non-linear covariate relationship. The results showed that Incorporating frailty leads to significant 

improvements, and the DLF model performs better on average.  
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I. INTRODUCTION 

The survival analysis of patients is an important section in medical research, as it estimates the time to specific events(1). Deep 

learning methods have recently become quite popular for modeling complex relationships within survival data. In this work, the 

authors investigate advanced applications of deep neural networks in survival analysis within the framework of frailty models. 

Frailty is the unobserved heterogeneity that influences the occurrence of the event. Combining the ideas could, therefore, enhance 

the accuracy and interpretability of survival predictions in domains with multiple possible outcomes(2, 3). 

Traditional survival analysis models usually assume that the data are independently and identically distributed, which might be 

the reason for biased estimates, hence reducing their accuracy(4). Therefore, sophisticated methods are required to capture 

nonlinear relationships within such models. This paper proposes a new method of incorporating frailty models into deep neural 

networks to perform survival analysis on heart failure patients by considering the dependency structure among the observations 

explicitly. The present study aims to develop a more powerful framework for predicting survival outcomes and compare its  

performance with DeepSurv(5, 6). 

II. LITERATURE REVIEW 

Recent advancements in deep learning have significantly impacted survival analysis, particularly in addressing the challenges 

posed by unobserved heterogeneity. Lee et al. (2018) introduced DeepHit, a non-parametric model that surpasses traditional 

methods by learning the distribution of survival times without restrictive parametric assumptions (7). To mitigate the negative 

impact of irrelevant features, Rietschel et al. (2018) proposed innovative feature selection techniques that significantly improved 

deep learning model performance in medical datasets (8). Huang and Liu (2020) developed DeepCompete. This continuous-time 

model effectively handles competing risks (9), while Nagpal et al. (2020) presented Deep Survival Machines. This fully 

parametric model outperforms traditional methods in handling censored data without relying on the Cox proportional hazards 

assumption (10). 

 

Recent studies have explored the integration of frailty models into deep learning frameworks to address unobserved heterogeneity 

(11). Tran et al. (2020) and Mendel et al. (2022) incorporated random effects into deep neural networks to account for frailty 

(12  ,13) , while Hangbin Lee et al. (2023) proposed the DNN-FM model, which effectively handles censored survival data and 

improves predictive performance (14) . Wu et al. (2023) introduced the Neural Frailty Machine (NFM), which incorporates 

multiplicative frailty to address unobserved heterogeneity and demonstrates superior predictive capabilities across various 

datasets (15) . 
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FRAILTY MODELS, A CORNERSTONE OF MODERN SURVIVAL ANALYSIS, EXTEND THE COX MODEL BY 

INTRODUCING A MULTIPLICATIVE RANDOM EFFECT TO ACCOUNT FOR UNOBSERVED HETEROGENEITY (16  ,

17 )  

While the theoretical foundations of frailty models are well-established, most research has focused on linear relationships  (18  ,

19 ,20) . 

By leveraging deep learning, frailty models can capture complex, non-linear relationships and address censoring and competing 

risks through the frailty parameter. This flexible approach accurately estimates unobserved heterogeneity and correlations 

between different event types. Additionally, it improves the precision of covariate effect estimates based on specific event causes, 

ultimately enhancing the model's accuracy and predictive performance.  

III. MATERIALS AND METHODS 

A. Study Population 

Data from 529 patients admitted into the RCMCH information system between March and August 2018 were first retrieved for 

analysis. They were diagnosed with HFrEF and received standard treatment. After the exclusion of those patients who did not 

undergo standard treatment, the data from 435 patients will be included in the survival time analysis, followed from 2018 to July 

2023, equivalent to 5 years. This dataset consists of 57 demographic and clinical features.  
B. Statistical Analysis  

 

All the raw data in this investigation were put together in the form of a database, and further tests were run on the processed data.  

These analyses have been implemented through Python using Pytorch by implementing both DLF and DeepSurv models. There 

were standard training/validation splits in the survival dataset, so a 5-fold cross-validation was done with one fold reserved for 

testing and 20% used for validation. Model performance was evaluated using three metrics standard in survival predictions, 

namely the integrated Brier score (IBS), integrated negative binomial log-likelihood (INBLL), and c-index. 

DLF considers different deep neural network architectures for the modeling of survival analysis. The central insight driving this 

work is the way censored observations enter into a likelihood to produce consistent parameter estimates, given partial information 

about event times. Extension to include frailty into the deep neural network model enables the DLF structure to capture 

individual-specific traits or temporal changes driven by some unobserved factors that possibly influence event risk. Intra-

individual correlation can be induced by unobservable individual-specific factors. 

For the frailty variable u, we utilize the gamma density function; 

 

𝐺𝜃(𝑥) =
1

𝜃
log(1 + 𝜃𝑥) , 𝜃 ≥ 0             (1) 

 

We begin by integrating the conditional survival function with frailty to derive the observed likelihood function: 

 

𝑆( 𝑡 ∣ 𝑋 ) = 𝔼𝑢𝑖∼𝑓𝜃
[𝑒−𝑢𝑖 ∫  

𝑡
0 𝑒ℎ(𝑠,𝑋)𝑑𝑠]

=: 𝑒−𝐺𝜃(∫  
𝑡
0 𝑒ℎ(𝑠,𝑋)𝑑𝑠)

(2) 

 

The frailty transform (𝐺𝜃(𝑥) = −log⁡(𝔼𝑢𝑖∼𝑓𝜃
[𝑒−𝑢𝑖x]) is defined as the (−log) Of the Laplace transform of the frailty 

distribution for each cause. Consequently, the conditional cumulative hazard function is given by⁡H(𝑡|𝑋) =

𝐺𝜃 (∫  
𝑡

0
𝑒ℎ(𝑠,𝑋)𝑑𝑠). 

 

For the PF model, we utilize two Multi-Layer Perceptrons (MLPs), denoted asℎ^ = ℎ^(𝑡;𝑊ℎ, 𝑏ℎ) and𝑚̂ = 𝑚̂(𝑋;𝑊𝑚, 𝑏𝑚) , to 

approximate the functions h and m, parameterized by (𝑊ℎ, 𝑏ℎ)and (𝑊𝑚 , 𝑏𝑚), respectively. Here, W represents a collection of 

weight matrices across all layers of the MLPs, while b denotes a set of bias vectors across all layers. Considering the standard 

results regarding the likelihood of censored data as presented in Equation (2), the learning of parameters under the PF framework 

can be expressed as follows (26). 

 

ℒ(Wℎ, bℎ,W𝑚, b𝑚, 𝜃)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

=
1

𝑛

[
 
 
 
 ∑  

𝑖∈[𝑛]

𝛿𝑖 log 𝑔𝜃 (𝑒𝑚̂(𝑋𝑖) ∫  
𝑇𝑖

0

𝑒ℎ̂(𝑠)𝑑𝑠) + 𝛿𝑖ℎ̂(𝑇𝑖) + 𝛿𝑖𝑚̂(𝑋𝑖)

−𝐺𝜃 (𝑒𝑚̂(𝑋𝑖) ∫  
𝑇𝑖

0

𝑒ℎ̂(𝑠)𝑑𝑠)
]
 
 
 
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3)
 

 

in which 𝑔𝜃(𝑥) =
𝜕

𝜕𝑥
𝐺𝜃(𝑥). 

The estimated conditional cumulative risk and survival functions are represented by equation (4). 
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ĤDLF(𝑡 ∣ 𝑋) = 𝐺𝜃̂𝑛
(∫  

𝑡

0

𝑒ℎ̂𝑛(𝑠)+𝑚̂𝑛(𝑋)𝑑𝑠),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4)

𝑆̂DLF(𝑡 ∣ 𝑋) = 𝑒−Ĥ𝐃𝐋𝐅(𝑡∣𝑋),

 

IV. RESULTS 

This study analyzed the mortality of 435 heart failure patients over five years, focusing on deaths from heart failure. At the 

study's conclusion, 29.4% of patients were alive, and 40.9% were censored. Of the patients, 43.96% died from heart failure. The 

median survival time was 43.40 months. 

The one-year survival rate for patients who died from heart failure was 80.66% (95% CI: 0.76-0.84), decreasing to 68.3% (95% 

CI: 0.63-0.72) at three years and 59.52% (95% CI: 0.54-0.64) at five years. For those who died from other causes, the survival 

rates were 91.78% (95% CI: 0.88-0.94) at one year, 79.08% (95% CI: 0.74-0.83) at three years, and 70.29% (95% CI: 0.64-0.75) 

at five years. 

The mean age of all patients was 18.11 ± 56.57 years, ranging from 14 to 95. Among those who died from heart failure, the 

average age was 59.26 ± 1.40 years, with the highest mortality in the 56-65 age group. Of these, 63.1% were male, 89.4% self-

employed, and 87.5% held a bachelor's degree. Additionally, 93.1% resided in urban areas, and 89.4% were married. 

To identify the optimal learning rate for the deepsurv and DLF models, we conducted experiments using a range of learning 

rates, specifically [0.1, 0.01, 0.001, 0.0001, 1e-05], and evaluated performance based on the c-index criterion. This process 

involved creating and deploying a new deepsurv model for each learning rate, utilizing a Negative Loglikelihood loss function 

and the Adam optimizer over 50 epochs, during which learning rate and weight decay were monitored. We systematically 

compared model performance across these learning rates and determined the optimal rate to be lr = 0.006 (Fig 1).  

We assessed the performance gains of DLF relative to their non-frailty counterpart, DeepSurv. As shown in Table 1, 

incorporating frailty leads to significant improvements, with performance increases exceeding 10% for  DLF models in IBS and 

INBLL metrics. This enhancement is consistent across the HF dataset. The results suggest that the DLF model performs better 

on average. 

TABLE I.  DLF MODELS IN COMPARISON TO THE NON-FRAILTY DEEPSURV MODEL. 

Model 
metrics 

IBS INBLL c-index 

DeepSurve 0.27±0.02 0.62±0.01 0.55±0.04 

DLF 0.17±0.01 0.53±0.02 0.66±0.04 

 

 
Fig 1: Assessing model performance on both training and validation datasets 

 

V. DISCUSSION 

This study aimed to evaluate the accuracy of a deep learning model incorporating a frailty approach applied to heart failure 

data. The Deep Neural Frailty(DLF) method introduces an innovative approach to modeling mortality by utilizing two distinct 

neural network structures. 

The results demonstrate that the DLF framework effectively handles censored data in survival analysis, leading to improved 

predictive accuracy, reduced bias, enhanced robustness, and more personalized predictions. These advantages make it a 

valuable tool for healthcare applications, where censored data is common. Our findings also indicate that incorporating frailty 

into the deep learning model significantly improves its predictive accuracy when applied to heart failure data. Frailty, in the 

context of time-to-event modeling, accounts for unobserved heterogeneity among individuals, which can influence the 

occurrence of an event. Frailty models extend traditional survival models, such as the Cox model, by introducing random 

effects that capture individual-specific factors not directly observed but influencing the event of interest. By including frailty, 
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time-to-event models better account for variability in event times that cannot be explained by the measured covariates alone. 

This study also compared two survival models: The DeepSurv model, and the DLF model with proportional frailty. Despite the 

small sample size, results showed that both the DeepSurv and DLF models outperform others in terms of accuracy in 

predicting survival time, thanks to their advanced ability to model complex relationships. This comparison helps guide 

researchers in selecting the most suitable model for survival analysis. These models excel at capturing complex, non-linear 

relationships between input variables and survival outcomes. Supporting our results, a study by Ruofan Wu et al. examined the 

performance of the Neural Frailty Machine (NFM) on survival data from five datasets, demonstrating that NFM outperformed 

12 other reference models, particularly on the METABRIC, SUPPORT, and MIMIC-III datasets. NFM showed significant 

improvements in evaluation metrics such as IBS and INBLL compared to other models (15). 

However, some studies argue that there is no conclusive evidence to suggest that deep learning models consistently outperform 

classical models. While deep learning is recognized for its ability to model complex and non-linear relationships, especially in 

survival time prediction, its performance is not always significantly superior to that of traditional models. Classical models can 

sometimes perform just as well, or even better, in certain cases. Additionally, some studies suggest that deep learning models 

require larger datasets for training and fine-tuning and may not consistently outperform traditional models when data is scarce 

(21). Both the DLF and the classic Cox model are important tools for analyzing competing risks, but they differ in structure 

and application. Ultimately, the choice of model depends on the specific characteristics of the data and the research context, 

meaning that deep learning models are not universally superior to classical models (22 ,23) . 
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