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Abstract—Understanding individual motor signatures (IMS) is essential for personalized treatment and performance 

optimization. This study investigates the effectiveness of Fuzzy C-Means (FCM) clustering for identifying individual 

motor signatures from graphomotor tasks. We analyze various kinematic and geometric features, such as movement 

duration, velocity, and trajectory length, to reveal which aspects of motor behavior are most effective in 

distinguishing individuals. The results show that features like length of movement are particularly discriminative, 

while others, such as beta and velocity, offer weaker clustering outcomes. 

 

Keywords—Motor behavior, Fuzzy C-Means clustering, hand-drawing tasks, motor signatures, feature selection. 

INTRODUCTION 
Understanding individual motor signatures (IMS) is essential in neurorehabilitation, biomechanics, and motor learning. IMS 

refers to distinct movement patterns shaped by neural, muscular, and cognitive factors. Accurately capturing IMS offers valuable 

insights for personalized treatment and performance optimization. However, capturing these unique motor patterns is challenging 

due to variability in motor behavior across individuals. Statistical analyses often fail to capture subtle differences, making 

clustering techniques like Fuzzy C-Means (FCM) a potential solution for distinguishing meaningful motor differences. This 

paper investigates the use of FCM clustering to capture IMS based on kinematic and geometric features from hand-drawing 

tasks. In particular, the study seeks to identify which features are most effective for distinguishing motor patterns, as well as the 

conditions under which certain features outperform others. We hypothesize that while some features will excel in clustering by 

capturing strong individual characteristics, others may offer weaker discriminative power due to their sensitivity to finer, less 

idiosyncratic aspects of movement [1], [2]. 

METHOD 
Subjects 
Nine healthy subjects (1 male, 8 female) aged 18–25 (2 left-handed, 7 right-handed) participated in the study. All subjects were 

free from conditions affecting cognitive or motor abilities. The Edinburgh Inventory was used to assess handedness. The study 

was approved by an ethical review board, and informed consent was obtained from all participants. 

Experiment Procedure 
Subjects were instructed to draw cloverleaf and eight-shaped patterns with their dominant hand in a counterclockwise direction 

on a paper sheet for 5 trials, each including 20 continuous repetitions. A Wacom tablet recorded the coordinates of each 

movement (temporal resolution: 200 samples/s; resolution: 1748 by 2551; active area: 210 × 297 mm). In total, each subject 

performed 100 repetitions. 

Feature Extraction 
The extracted kinematic and geometric features included: Length—the sum of the distance between successive points (cm), 

Movement duration (s), Maximum velocity (max V)—peak velocity during the movement (cm/s), Beta—the exponent in the 

relationship between velocity and curvature of the trajectory, Correlation coefficient—covariation between velocity and 

trajectory curvature. Data were preprocessed with a low-pass filter (0.07 Hz cut-off). Successive repetitions were separated using 

local velocity minima. 

Data Analysis and Clustering 
The dataset was normalized using min-max normalization. We applied FCM clustering, which allows data points to belong to 

multiple clusters with varying degrees of membership. This clustering method is beneficial for analyzing motor data that may 

overlap between distinct motor patterns. The FCM algorithm minimizes an objective function iteratively based on membership 

values for each data point.  
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To evaluate the clustering performance of the FCM (Fuzzy C-Means) model, we used an entropy-based measure to assess the 

degree of "fuzziness" in the clustering results, with lower entropy (fuzziness) indicating better clustering quality. Let 𝑈 =  [𝑢𝑖𝑗] 

represent the membership matrix, where 𝑢𝑖𝑗 is the degree of membership of data point 𝑖 in cluster 𝑗. In FCM, 𝑢𝑖𝑗 values lie in 

the interval [0, 1] and satisfy the constraint: 

∑ 𝑢𝑖𝑗

𝑐

𝑗=1

= 1 
(1) 

for each data point 𝑖, where 𝑐 is the total number of clusters. 

The entropy 𝐸 for the clustering result is calculated as follows: 

𝐸 = −
1

𝑁
∑ ∑ 𝑢𝑖𝑗 log(𝑢𝑖𝑗)

𝑐

𝑗=1

𝑁

𝑖=1

 
(2) 

where: 

• 𝑁 is the total number of data points, 

• 𝑐 is the number of clusters, 

• 𝑢𝑖𝑗 log(𝑢𝑖𝑗) represents the contribution of data point 𝑖 to the entropy for cluster 𝑗. 

If entropy values are low, it suggests that data points have high membership values for specific clusters and are assigned to 

clusters with greater certainty. Conversely, high entropy values imply greater uncertainty, with data points more equally 

distributed across multiple clusters, indicating a fuzzier clustering outcome. Thus, this entropy-based metric allowed us to 

quantitatively assess the FCM clustering quality, capturing the degree of overlap in cluster memberships and providing insights 

into the clarity of the clusters formed. 

RESULTS 

The effect of the number of clusters (single feature clustering) 

Fig. 1.A, presents the entropy values obtained from clustering the hand-drawing data into two and three groups, based on different 

extracted features. Entropy here is used as a measure of clustering efficiency, where lower entropy indicates more distinct, well-

separated clusters. 

The results show that the feature "length of shape" yields the lowest entropy, suggesting it is the most effective feature for 

clustering hand-drawing data. In contrast, beta results in the highest entropy, making it the least useful feature for this task. 

Therefore, length emerges as the best discriminative feature, while beta performs the worst in distinguishing between different 

behaviors. 

The figure also demonstrates how features affect the number of clusters that can be effectively discriminated. For example, max 

V and duration achieve better entropy values when clustering into three groups, indicating that these features provide more 

granularity and are better suited for finer distinctions. On the other hand, length, beta, and the correlation coefficient perform 

better when clustering into two groups, suggesting that these features are more effective at separating the data into broader 

categories. 

Fig. 1, B to D further illustrate the distribution of clusters for the two extreme features: length (the best-performing feature) and 

beta (the worst-performing feature). The clusters, colored according to membership values, reveal notable differences in 

performance between these features. 

In the case of length, although it clearly separates the data into more distinct clusters (with greater inter-cluster distance), the 

cluster sizes are imbalanced, meaning that one cluster contains significantly more members than the others. This suggests that 

while length is highly discriminative, it may overfit certain behaviors. 

On the other hand, beta produces more uniform clusters, with relatively balanced sizes, but the separation between clusters is 

less distinct, implying poorer discriminative power. Beta's ability to cluster data is limited, which aligns with its higher entropy 

score. 
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Fig. 1- Clustering Performance for cloverleaf task. A) Entropy values for all clustering cases using different features, shown 

for both 2 and 3 clusters. B) Cluster centers for the length feature in the 2-cluster case. C) Cluster centers for the beta feature in 

the 2-cluster case. D) Cluster centers for the length feature in the 3-cluster case. E) Cluster centers for the beta feature in the 3-

cluster case. The size of each circle reflects the number of members in each cluster, highlighting differences in cluster size. 

In Fig. 2, A, the results of the clustering of extracted data from the eight-shape task. Similar to the previous results, length had 

the best entropy for discriminating data in 3 clusters and beta had the worst value. In the second task, we applied the same 

clustering analysis to hand-drawing movements involving the eight-shape. Fig. 2, shows the entropy values for clustering into 2 

and 3 groups. 

As with the cloverleaf task, the length again showed the best clustering performance, yielding the idea that length is a highly 

effective feature for distinguishing between hand-drawing behaviors, regardless of the specific shape being drawn. In contrast, 

beta showed the worst clustering performance, resulting in the highest entropy values, indicating that it struggles to effectively 

differentiate behaviors in both tasks. 

Interestingly, in this task, duration performed better when clustering into 3 groups, similar to the findings from the cloverleaf 

task. This suggests that this feature may capture more subtle differences in drawing dynamics, which are better revealed when 

the data is split into finer-grained categories. For max V, the entropy decreased in the eight-shape compared to the cloverleaf 

task. In this task, the temporal features showed better performance. 

Fig. 2, B to E illustrate the clustering distributions for length (best feature) and beta (worst feature). As observed in the cloverleaf 

task, length produces more distinct clusters with greater separation between them, though the clusters are unevenly sized. Beta, 

on the other hand, forms more balanced clusters in terms of size, but with much less separation between the groups, which 

indicates poorer overall discrimination. 

 

Fig. 2- Clustering Performance for eight-shape task. A) Entropy values for all clustering cases using different features, 

shown for both 2 and 3 clusters. B) Cluster centers for the length feature in the 2-cluster case. C) Cluster centers for the beta 

feature in the 2-cluster case. D) Cluster centers for the length feature in the 3-cluster case. E) Cluster centers for the beta 
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feature in the 3-cluster case. The size of each circle reflects the number of members in each cluster, highlighting differences in 

cluster size. 

The effect of the feature dimensions (multiple features clustering) 

Fig. 3, shows the mean entropy values obtained from clustering with different combinations of features, ranging from single-

feature clustering (1 dimension) to using all five features together (5 dimensions). The results demonstrate a clear trend: as more 

features are combined for clustering, the performance deteriorates, as indicated by increasing entropy values. This trend is 

consistent across both tasks (cloverleaf and eight-shape) and suggests that adding more features leads to poorer clustering 

performance, possibly due to redundant or less discriminative information being introduced. 

These findings highlight the importance of careful feature selection in clustering analyses of hand-drawing data, as using more 

features does not necessarily result in better discrimination. Instead, focusing on key individual features may yield more precise 

clustering and better identification of motor signatures. 

 

Fig. 3- Entropy values for clustering with different combinations of features (from 1 to 5 dimensions) across both tasks 

(cloverleaf and eight-shape) for 2-cluster discrimination. 

Comparison with other methods 

In this section, we compare the performance of FCM with two other clustering methods: K-Means [3], [4] and Hierarchical 

Clustering (HC) [5]. K-Means is a hard clustering algorithm that assigns each data point to the nearest cluster centroid. It is 

computationally efficient and performs well for datasets with spherical clusters. In contrast, HC is an agglomerative or divisive 

clustering method that constructs a hierarchy of clusters using a bottom-up (agglomerative, in this case) or top-down (divisive) 

approach. Unlike FCM and K-Means, HC does not require the number of clusters to be specified a priori. However, to ensure a 

fair comparison, we truncate the HC dendrogram at a specific level to obtain the same number of clusters as used in FCM and 

K-Means. This allows us to evaluate the performance of all three methods under identical conditions. 

Since we used the fuzziness metric to evaluate the performance of FCM, this metric cannot be applied to K-Means and HC. This 

is because both K-Means and HC are hard clustering methods, assigning each data point to a single cluster, resulting in a fuzziness 

value of 0. To enable a fair comparison across all methods, we employ the Silhouette Index [6], a metric that quantifies cluster 

quality by measuring how similar a data point is to its own cluster compared to other clusters. However, since the traditional 

Silhouette Score is designed for hard clustering and is not directly applicable to FCM, we use a variant called the Fuzzy 

Silhouette Index [7] with 𝛼 = 1. This metric incorporates fuzzy membership degrees while retaining the same interpretability 

as the traditional Silhouette Score, allowing us to compare FCM, K-Means, and HC on a common scale. 

In Table 1, we compare the average cluster quality of FCM, K-Means, and HC using the Silhouette Score (Fuzzy Silhouette 

Index for FCM). For 3-cluster solutions, FCM achieves the highest average score (0.48), followed by HC (0.47) and K-Means 

(0.45). While FCM outperforms the other methods in this comparison, the small difference between FCM and HC suggests that 

both algorithms may be viable choices depending on the application context. Future work should validate these results with 

statistical significance testing. 

Table 1- Average Silhouette Scores (Fuzzy Silhouette Index for FCM) Across All Feature Combinations for 3-Cluster 

Solutions. Higher values indicate better cluster quality, with a maximum possible score of +1. 

 FCM K-Means HC 

3 Clusters 0.48 0.45 0.47 

DISCUSSION 
The present study employed Fuzzy C-Means (FCM) clustering to analyze motor performance using hand-drawing tasks, aiming 

to understand how kinematic and geometrical parameters can reveal individual motor patterns and their underlying dynamics. 

By examining clustering efficiency across two distinct tasks—drawing cloverleaf and eight-shape patterns—we identified 

specific features that excel at distinguishing between motor behaviors, providing valuable insights into the feature-based 

clustering of complex motor actions. 

Longer lengths may indicate fluid, continuous movements, while shorter lengths might suggest more controlled, segmented 

actions. The variability in length across individuals likely reflects their unique movement characteristics, such as drawing speed, 

force, and control stability [8], [9]. This variability makes length a highly idiosyncratic feature, able to reveal distinct motor 

patterns between individuals. Aligning with our results, research has demonstrated that spatial consistency often serves as a 

marker of individual motor behaviors [10], [11]. Moreover, length as a measure is minimally influenced by the shape type 

(cloverleaf or eight-shape), allowing it to act as a robust indicator of underlying motor behavior regardless of task specifics. 

Conversely, beta—an exponent in the power-law relationship between velocity and curvature—was less effective in 

distinguishing motor patterns, likely due to its reliance on more abstract relationships sensitive to noise [12], [13]. Additionally, 

beta captures subtleties in the coordination between speed and path shape, but these subtleties may not vary significantly across 
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individuals in a way that clearly distinguishes their motor behaviors. As a result, beta yielded clusters with higher intra-cluster 

ambiguity, illustrating that it is a less reliable indicator of distinct motor profiles in these tasks. These finding highlights that not 

all kinematic parameters are equally useful for IMS; features like length, which capture direct spatial and motor control aspects, 

provide clearer clustering outcomes [14]. 

Temporal features such as duration and maximum velocity also performed well in three-cluster configurations, capturing 

dynamic aspects of drawing reflective of individual pacing and motor control nuances [15], [16]. These results underscore the 

importance of dynamic control markers for differentiating motor behaviors, consistent with prior research on pacing and motor 

coordination [17]. 

Moreover, combining multiple features generally led to higher entropy, suggesting that redundant or conflicting information 

introduced noise that weakened clustering performance [18], [19]. This supports the notion that selective feature inclusion is 

essential in clustering, as excess dimensions can obscure rather than clarify individual motor signatures [20]. 

CONCLUSION AND IMPLICATIONS 
In summary, this study underscores the potential of targeted feature selection in clustering motor behaviors and highlights the 

differential utility of specific kinematic and temporal features in distinguishing individual motor patterns. Length, with its ability 

to capture spatial control and idiosyncratic motor traits, emerged as a particularly valuable feature, while beta was found to be 

less effective due to its sensitivity to nuanced, less variable aspects of motor behavior. Temporal features like duration and 

maximum velocity offer additional insights, particularly in more granular clustering scenarios where finer distinctions in pacing 

and control are relevant. 

These findings contribute to the methodological approach of using feature-based clustering to capture individual motor 

signatures. In future research, this framework could be applied to diverse motor tasks or clinical populations, where unique motor 

signatures may help identify early markers of neurological conditions or tailor rehabilitation protocols. Overall, this study 

provides a foundation for refining clustering techniques in motor analysis, demonstrating that careful feature selection can 

enhance the interpretability and effectiveness of clustering in capturing distinct motor behaviors. 
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